A reprogrammable mechanical metamaterial with stable memory



[ad_1]

  • 1.

    Shelby, RA, Smith, DR & Schultz, S. Experimental verification of a negative refractive index. Science 292, 77–79 (2001).

    Article ADS CAS Google Scholar

  • 2.

    Li, J. & Chan, CT Double negative acoustic metamaterial. Phys. Dream 70, 055602 (2004).

    Google Scholar ADS Article

  • 3.

    Clausen, A., Wang, F., Jensen, JS, Sigmund, O. & Lewis, JA Architectures optimized for topology with a programmable Poisson’s ratio on large deformations. Adv. Mat. 27, 5523–5527 (2015).

    Google Scholar CAS Article

  • 4.

    Konaković-Luković, M., Panetta, J., Crane, K. & Pauly, M. Rapid deployment of curved surfaces via programmable auxetics. ACM Trans. Graphic. 37, 1–13 (2018).

    Google Scholar article

  • 5.

    Coulais, C., Teomy, E., de Reus, K., Shokef, Y. & van Hecke, M. Combinatorial design of textured mechanical metamaterials. Nature 535, 529-532 (2016).

    Article ADS CAS Google Scholar

  • 6.

    Guseinov, R., McMahan, C., Pérez, J., Daraio, C. & Bickel, B. Programming of the temporal morphing of self-actuated shells. Nat. Common. 11, 237 (2020).

    Article ADS CAS Google Scholar

  • seven.

    Zheng, X. et al. Ultralight and ultra-resistant mechanical metamaterials. Science 344, 1373–1377 (2014).

    Article ADS CAS Google Scholar

  • 8.

    Meza, LR et al. Resilient 3D hierarchical architecture metamaterials. Proc. Natl Acad. Sci. United States 112, 11502-11507 (2015).

    Article ADS CAS Google Scholar

  • 9.

    Shan, S. et al. Multistable architectural materials to trap elastic strain energy. Adv. Mat. 27, 4296–4301 (2015).

    Google Scholar CAS Article

  • ten.

    Raney, JR et al. Stable propagation of mechanical signals in soft media using stored elastic energy. Proc. Natl Acad. Sci. United States 113, 9722–9727 (2016).

    Article ADS CAS Google Scholar

  • 11.

    Kim, Y., Yuk, H., Zhao, R., Chester, SA & Zhao, X. Printing ferromagnetic domains for flexible, fast-transforming unattached materials. Nature 558, 274-279 (2018).

    Article ADS CAS Google Scholar

  • 12.

    Jin, L., Khajehtourian, R., Mueller, J., Rafsanjani, A. & Tournat, V. Guided transition waves in multistable mechanical metamaterials. Proc. Natl Acad. Sci. United States 117, 2319-2325 (2020).

    ADS MathSciNet Article CAS Google Scholar

  • 13.

    Wang, P., Casadei, F., Shan, S., Weaver, JC & Bertoldi, K. Exploiting buckling to design locally tunable resonance acoustic metamaterials. Phys. Rev. Lett. 113, 014301 (2014).

    Google Scholar ADS Article

  • 14.

    Florijn, B., Coulais, C. & Van Hecke, M. Programmable mechanical metamaterials. Phys. Rev. Lett. 113, 175503 (2014).

    Google Scholar ADS Article

  • 15.

    Silverberg, JL et al. Using origami design principles to bend reprogrammable mechanical metamaterials. Science 345, 647–650 (2014).

    Article ADS CAS Google Scholar

  • 16.

    Sussman, DM et al. Kirigami in algorithmic lattice: a path to pluripotent materials. Proc. Natl Acad. Sci. United States 112, 7449–7453 (2015).

    Article ADS CAS Google Scholar

  • 17.

    Wang, Y. et al. Architectural trellises with adaptive energy absorption. Extreme. Mech. Easy. 33, 100557 (2019).

    Google Scholar article

  • 18.

    Medina, E., Farrell, PE, Bertoldi, K. & Rycroft, CH Navigating the landscape of nonlinear mechanical metamaterials for advanced programmability. Phys. Rev. B 101, 064101 (2020).

    Article ADS CAS Google Scholar

  • 19.

    Novelino, LS, Ze, Q., Wu, S., Paulino, GH & Zhao, R. Unconnected control of functional origami microrobots with distributed actuation. Proc. Natl Acad. Sci. United States 117, 24096-24101 (2020).

    Article ADS CAS Google Scholar

  • 20.

    Overvelde, JTB, Kloek, T., D’haen, JJA & Bertoldi, K. Amplify the response of flexible actuators by exploiting instantaneous instabilities. Proc. Natl Acad. Sci. United States 112, 10863-10868 (2015).

    Article ADS CAS Google Scholar

  • 21.

    Chen, T., Mueller, J. & Shea, K. Integrated design and simulation of monolithically fabricated multi-state adjustable structures with multi-material 3D printing. Sci. Representative. seven, 45671 (2017).

    Article ADS CAS Google Scholar

  • 22.

    Bilal, OR, Foehr, A. & Daraio, C. Reprogrammable phononic metasurfaces. Adv. Mat. 29, 1700628 (2017).

    Google Scholar article

  • 23.

    Faber, JA, Arrieta, AF & Studart, AR Bio-inspired spring origami. Science 359, 1386-1391 (2018).

    Article ADS CAS Google Scholar

  • 24.

    Le Ferrand, H., Studart, AR & Arrieta, AF Filtered mechanodetection using snap-in composites with integrated mechanical-electrical transduction. ACS Nano 13, 4752-4760 (2019).

    Google Scholar article

  • 25.

    Yasuda, H., Korpas, L. & Raney, J. Transition waves and domain wall formation in multistable mechanical metamaterials. Phys. Rev. App. 13, 054067 (2020).

    Article ADS CAS Google Scholar

  • 26.

    Sobota, PM & Seffen, KA Bistable polar orthotropic shallow shells. R. Soc. Open Sci. 6, 190888 (2019).

    Article ADS CAS Google Scholar

  • 27.

    Jia, Z. & Wang, L. Mechanical triple negative metamaterial triggered by instability. Phys. Rev. App. 12, 024040 (2019).

    Article ADS CAS Google Scholar

  • 28.

    Zheludev, NI & Kivshar, YS From metamaterials to meta-peripherals. Nat. Mat. 11, 917–924 (2012).

    Article ADS CAS Google Scholar

  • 29.

    Silva, A. et al. Perform mathematical operations with metamaterials. Science 343, 160-163 (2014).

    ADS MathSciNet Article CAS Google Scholar

  • 30.

    Cui, TJ, Qi, MQ, Wan, X., Zhao, J. & Cheng, Q. Coding of metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3, e218 (2014).

    Google Scholar ADS Article

  • 31.

    Della Giovampaola, C. & Engheta, N. Digital metamaterials. Nat. Mat. 13, 1115-1121 (2014).

    Article ADS CAS Google Scholar

  • 32.

    Oliveri, G. & Overvelde, JTB Reverse design of mechanical metamaterials that undergo buckling. Adv. Funct. Mat. 30, 1909033 (2020).

    Google Scholar CAS Article

  • 33.

    Bauhofer, AA et al. Exploit photochemical shrinkage in direct laser writing for shape transformation of polymer sheets. Adv. Mat. 29, 1703024 (2017).

    Google Scholar article

  • 34.

    Kotikian, A., Truby, RL, Boley, JW, White, TJ & Lewis, JA 3D printing of elastomeric liquid crystal actuators with spatially programmed nematic order. Adv. Mat. 30, 1706164 (2018).

    Google Scholar article

  • 35.

    Skylar-Scott, MA, Mueller, J., Visser, CW & Lewis, JA Soft material voxelated via multi-material multinozzle 3D printing. Nature 575, 330–335 (2019).

    Article ADS CAS Google Scholar

  • 36.

    Reis, PM, Heinrich, HM & Van Hecke, M. The designer’s material: a perspective. Extreme. Mech. Easy. 5, 25-29 (2015)

    Google Scholar article

  • 37.

    Ogden, RW Large strain isotropic elasticity – on the correlation between theory and experience for rubbery incompressible solids. Rubber Chem. Technol. 46, 398-416 (1973).

    Google Scholar article

  • 38.

    Ogden, RW & Roxburgh, DG A pseudo-elastic model for the loaded rubber Mullins effect. Proc. R. Soc. A 455, 2861-2877 (1999).

    ADS MathSciNet Google Scholar article

  • 39.

    Mises, RV On the stability problems of the theory of elasticity. Z. Angew. Math. Mech. 3, 406–422 (1923).

    Google Scholar article

  • 40.

    Schneider, CA, Rasband, WS & Eliceiri, KW NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Google Scholar CAS Article

  • 41.

    Griffiths, DJ Introduction to electrodynamics 3rd edition (Prentice-Hall, 1999).

  • 42.

    Cedolin, L. et al. Structural stability: theories of elasticity, inelasticity, fracture and damage (World Scientific, 2010).

  • [ad_2]

    Source link