Home / Health / An atlas of human liver cells reveals heterogeneity and epithelial progenitors

An atlas of human liver cells reveals heterogeneity and epithelial progenitors

  • 1.

    Michalopoulos, G. K. & DeFrances, M. C. Regeneration of the liver. Science 276, 60-66 (1997).

  • 2

    Ryerson, A.B. et al. Annual report to the nation on the state of cancer, 1975-2012, presenting the increasing incidence of liver cancer. Cancer 1221312-1337 (2016).

  • 3

    Grün, D. & van Oudenaarden, A. Design and analysis of single-cell sequencing experiments. Cell 163799-810 (2015).

  • 4

    Herman, J.S., Sagar and Grün, D. FateID deduce cellular fate bias in multipotent progenitors from single-cell RNA data. Nat. The methods 15379-386 (2018).

  • 5

    Grün, D. et al. Sequencing of unicellular messenger RNA reveals rare types of intestinal cells. Nature 525251-255 (2015).

  • 6

    Jungermann, K. & Kietzmann, T. Zonation of parenchymal and non-parenchymal metabolism in the liver. Annu. Rev Nutr. 16179-203 (1996).

  • 7.

    Gebhardt, R. Liver metabolic zonation: regulation and implications for liver function. Pharmacol. Ther. 53275-354 (1992).

  • 8

    Kietzmann, T. Metabolic zonation of the liver: the oxygen gradient revisited. Redox Biol. 11622-630 (2017).

  • 9

    Halpern, K.B. et al. The unicellular spatial reconstruction reveals the global division of labor in the mammalian liver. Nature 542352-356 (2017).

  • ten.

    MacParland, S.A. et al. Single-cell RNA sequencing of the human liver reveals distinct populations of intrahepatic macrophages. Nat. Common. 94383 (2018).

  • 11

    Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Dissemination. The pseudotime robustly reconstructs the branching of the lineage. Nat. The methods 13845-848 (2016).

  • 12

    Strauss, O., Phillips, A., Ruggiero, K., and Bartlett A. Dunbar, R. Immunofluorescence identifies distinct subsets of endothelial cells in the human liver. Sci. Representative. 744356 (2017).

  • 13

    Halpern, K.B. et al. The pairwise cell sequencing allows the mapping of the spatial gene expression of the endothelial cells of the liver. Nat. Biotechnol. 36962-970 (2018).

  • 14

    Raven, A. et al. Cholangiocytes act as facultative hepatic stem cells during impaired hepatocyte regeneration. Nature 547, 350-354 (2017).

  • 15

    Michalopoulos, G.K., Barua, L. and Bowen, W. C. Transdifferentiation of rat hepatocytes into biliary cells after ligation of the bile ducts and toxic biliary lesion. hepatology 41535-544 (2005).

  • 16

    Schmelzer, E. et al. Human liver stem cells from fetal and postnatal donors. J. Exp. Med. 2041973-1987 (2007).

  • 17

    Turner, R. et al. Biology of human hepatic stem cells and the maturing liver line. hepatology 531035-1045 (2011).

  • 18

    Grün, D. et al. De novo prediction of stem cell identity using single-cell transcriptome data. Cell strain cell 19266-277 (2016).

  • 19

    Okabe, M. et al. Potential liver stem cells reside in EpCAM+ normal and injured mouse liver cells. Development 1361951-1960 (2009).

  • 20

    Cardinale, V. et al. Multipotent stem / progenitor cells in human biliary trees give rise to hepatocytes, cholangiocytes and pancreatic islets. hepatology 542159-2172 (2011).

  • 21

    Kodama, Y. et al. Hes1 is necessary for the development of the intrahepatic bile ducts. Gastroenterology 124, A123 (2003).

  • 22

    Sosa-Pineda, B., Wigle, J.T. and Oliver, G. The migration of hepatocytes during liver development requires Prox1. Nat. Broom. 25254-255 (2000).

  • 23

    Huch, M. et al. Long-term culture of stable bipotent stem cells in the genome from adult human liver. Cell 160, 299-312 (2015).

  • 24

    Betge, J. et al. MUC1, MUC2, MUC5AC and MUC6 in colorectal cancer: Expression profiles and clinical significance. Virchows Bow. 469255-265 (2016).

  • 25

    Park, S.-W. et al. AGR2 disulfide isomerase protein is essential for the production of intestinal mucus. Proc. Natl Acad. Sci. United States 1066950-6955 (2009).

  • 26

    Forner, A., Reig, M. and Bruix, J. Hepatocellular carcinoma. Lancet 391, 1301-1314 (2018).

  • 27

    Matkowsky, K.A. et al. Aldoketoreductase family 1B10 (AKR1B10) as a biomarker for distinguishing hepatocellular carcinoma from benign hepatic injury. Hum. Pathol. 45834-843 (2014).

  • 28

    Rantakari, P. et al. The endothelial protein PLVAP in lymphatics controls the entry of lymphocytes and antigens into the lymph nodes. Nat. Immunol. 16, 386-396 (2015).

  • 29

    Grompe, M. & Strom, S. Mouse with human livers. Gastroenterology 145, 1209-1214 (2013).

  • 30

    Azuma, H. et al. Robust expansion of human hepatocytes at Fah– / –/ Rag2– / –/ Il2rg– / – mouses Nat. Biotechnol. 25903-910 (2007).

  • 31.

    Uhlén, M. et al. Proteomics. Tissue map of the human proteome. Science 3471260419 (2015).

  • 32

    Krieger, S.E. et al. The inhibition of infection by hepatitis C virus by anti-claudin-1 antibodies involves the neutralization of E2-CD81-claudin-1 combinations. hepatology 511144-1157 (2010).

  • 33

    Lieber, A., Peeters, M.J., Gown, A., Perkins, J. and Kay, M. A. A modified urokinase plasminogen activator induces regeneration of the liver without bleeding. Hum. Gene Ther. 61029-1037 (1995).

  • 34

    Mailly, L. et al. Elimination of persistent infection by hepatitis C virus in humanized mice with the aid of a monoclonal antibody targeting claudin-1. Nat. Biotechnol. 33, 549-554 (2015).

  • 35

    Hashimshony, T. et al. CEL-Seq2: Highly multiplexed, single-cell, highly sensitive monocyte-seq. Genome Biol. 17, 77 (2016).

  • 36

    Li, H. & Durbin, R. Fast and accurate long reading alignment with the Burrows-Wheeler transformation. bioinformatics 26589-595 (2010).

  • 37

    D. Grün, L. Kester and A. Oudenaarden, A. Validation of noise models for unicellular transcriptomics. Nat. The methods 11637-640 (2014).

  • 38

    Anders, S. & Huber, W. Analysis of Differential Expression for Sequence Count Data. Genome Biol. 11R106 (2010).

  • 39

    Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package that compares biological themes among clusters of genes. OMICS 16284-287 (2012).

  • 40

    Subramanian, A. et al. Gene Enrichment Analysis: A knowledge-based approach to interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. United States 10215545-1550 (2005).

  • 41

    Mootha, V.K. et al. The PGC-1α sensitive genes involved in oxidative phosphorylation are coordinated in human diabetes. Nat. Broom. 34267-273 (2003).

  • 42

    Yu, G. & He, Q. Y. ReactomePA: an R / Bioconductor software package for the analysis and visualization of the reateome pathway. Mol. Biosyst. 12477-479 (2016).

  • 43

    Broutier, L. et al. Culture and establishment of self-regenerating 3D organoids of adult human and mouse liver and pancreas and their genetic manipulation Nat. protocols 111724-1743 (2016).

  • 44

    Aizarani, N. et al. Protocol for sequencing monocellular RNA from cryopreserved hepatic cells. Protoc. Exch. https://doi.org/10.21203/rs.2.9620/v1 (2019).

  • Source link