Atypical Behavior and Connectivity in SHANK3 Mutant Macaques



[ad_1]

  • 1.

    Naisbitt, S. et al. Shank, a new family of postsynaptic density proteins that binds to the NMDA / PSD-95 / GKAP receptor complex and cortactin. neuron 23569-582 (1999).

  • 2

    Jiang, Y.H. & Ehlers, M.D. Modeling autism by SHANK gene mutations in mice. neuron 78, 8-27 (2013).

  • 3

    Moessner, R. et al. Contribution of SHANK3 mutations to autism spectrum disorder. A m. J. Hum. Broom. 811289-1297 (2007).

  • 4

    Phelan, K. & McDermid, H. E. Deletion syndrome 22q13.3 (Phelan-McDermid syndrome). Mol. Syndromol. 2, 186-201 (2012).

  • 5

    Betancur, C. & Buxbaum, J. D. SHANK3 haploinsufficiency: a "very common" but under-diagnosed and highly penetrating monogenic cause of autism spectrum disorders. Mol. Autism 417 (2013).

  • 6

    Sanders, S.J. et al. Overview of genomic architecture and genomic biology of autism spectrum disorders from 71 at-risk loci. neuron 87, 1215-1233 (2015).

  • 7.

    Leblond, C.S. et al. Meta-analysis of SHANK mutations in autism spectrum disorders: a severity gradient in cognitive impairment. PLoS Genet. ten, e1004580 (2014).

  • 8

    Frank, Y. et al. A prospective study of neurological abnormalities in Phelan-McDermid syndrome. J. Rare Disord. 5, 1-13 (2017).

  • 9

    Chen, J.A., Peñagarikano, O., Belgard, T.G., Swarup, V. & Geschwind, D.H.The Emerging Image of Autism Spectrum Disorders: Genetics and Pathology. Annu. Rev. Pathol. ten111-144 (2015).

  • ten.

    Gauthier, J. et al. De novo mutations in the gene coding for the synaptic scaffold protein SHANK3 in patients identified for schizophrenia. Proc. Natl Acad. Sci. United States 1077863-7868 (2010).

  • 11

    Peça, J. et al. Shank3 mutant mice display behaviors similar to those of autistic and striatal dysfunction. Nature 472437-442 (2011).

  • 12

    Jennings, C.G. et al. Opportunities and challenges of modeling human brain disorders in transgenic primates. Nat. Neurosci. 191123-1130 (2016).

  • 13

    Bauman, M. D. & Schumann, C. M. Advances in Autism Models in Nonhuman Primates: Integrating Neuroscience and Behavior. Exp. Neurol. 299252-265 (2018).

  • 14

    Chang, S. W. et al. Neuroethology of the social behavior of primates. Proc. Natl Acad. Sci. United States 11010387-10394 (2013).

  • 15

    Platt, M.L., Seyfarth, R.M. and Cheney, D.L. Adaptations for social cognition in the brain of primates. Phil Trans. R. Soc. Lond. B 37120150096 (2016).

  • 16

    Izpisua Belmonte, J.C. et al. Brain, genes and primates. neuron 86617-631 (2015).

  • 17

    Sclafani, V. et al. Early predictors of altered social functioning in Rhesus macaque males (Macaca Mulata). PLoS ONE 11e0165401 (2016).

  • 18

    Liu, Z. et al. Behaviors similar to autism and germline transmission in transgenic monkeys overexpressing MeCP2. Nature 530, 98-102 (2016).

  • 19

    Chen, Y. et al. Modeling of Rett syndrome using MECP2 mutant cynomolgus monkeys published by TALEN. Cell 169945-955 (2017).

  • 20

    Sasaki, E. et al. Generation of non-human transgenic primates with germinal transmission. Nature 459, 523-527 (2009).

  • 21

    Cong, L. et al. Multiplex genome engineering using CRISPR / Cas systems. Science 339819-823 (2013).

  • 22

    Niu, Y. et al. Generation of gene-modified cynomolgus monkeys via Cas9 / RNA gene targeting in single-cell embryos. Cell 156836-843 (2014).

  • 23

    Zhao, H. et al. Altered neurogenesis and disturbed expression of synaptic proteins in the prefrontal cortex of SHANK3deficient nonhuman primate. Cell Res. 271293-1297 (2017).

  • 24

    Tu, Z. et al. CRISPR / Cas9 mediated disturbance SHANK3 in monkeys leads to symptoms similar to autism that can be treated with drugs. Hum. Mol. Broom. 28561-571 (2019).

  • 25

    Durand, C.M. et al. Mutations in the gene encoding SHANK3 synaptic scaffold protein are associated with autism spectrum disorders. Nat. Broom. 39, 25-27 (2007).

  • 26

    Zhou, Y. et al. Mouse with Shank3 mutations associated with ASD and schizophrenia have both common and distinct defects. neuron 89147-162 (2016).

  • 27

    Speed, H.E. et al. Insertion mutation associated with autism (InsG) of Shank3 Exon 21 impairs synaptic transmission and behavioral deficits. J. Neurosci. 359648 to 9665 (2015).

  • 28

    Bae, S., Park, J. and Kim, J. Case-OFFinder S.: a fast and versatile algorithm that searches for potentially off-target sites of RNA-guided endonucleases Cas9. bioinformatics 30, 1473-1475 (2014).

  • 29

    Jiang, Y. & Platt, M. L. Oxytocin and vasopressin flatten the hierarchy of dominance and improve behavioral synchrony partly via the anterior cingulate cortex. Sci. Representative. 88201 (2018).

  • 30

    Falck-Ytter, T., Bölte, S. and Gredebäck, G. Eye tracking in early research on autism. J. Neurodev. Disorder. 5, 28 (2013).

  • 31.

    Mosher, C.P., Zimmerman, P.E. and Gothard, K.M Conspecific videos elicit interactive search patterns and facial expressions in monkeys. Neurosci Behavior. 125639-652 (2011).

  • 32

    Daluwatte, C. et al. Atypical pupillary reflex and variability of heart rate in children with autism spectrum disorders. J. Autism Dev. Disorder. 43, 1910-1925 (2013).

  • 33

    Maestripieri, D. & Wallen, K. T. Affiliate communication and submission to rhesus macaques. primates 38127-138 (1997).

  • 34

    Hinde, R. & Rowell, T. E. Communication by Postures and Facial Expressions in the Rhesus Monkey (Macaca Mulata). J. Zool. 138, 1-21 (1962).

  • 35

    Gothard, K.M., Battaglia, F.P., Erickson, C.A., Spitler, K.M. & Amaral, D.G. Neural Responses to Facial Expression and Face Identity in Monkey Amygdala. J. Neurophysiol. 971671-1683 (2007).

  • 36

    Parr, L. A. & Heintz, M. Recognition of facial expression in rhesus monkeys, Macaca Mulata. Anim. Behavior. 771507-1513 (2009).

  • 37

    Wass, S.V. et al. Shorter spontaneous fixation times in infants with autism emerge later. Sci. Representative. 58284 (2015).

  • 38

    Tabet, A.C. et al. A framework for identifying contributor genes in patients with Phelan-McDermid syndrome. NPJ Genom. Med. 2, 32 (2017).

  • 39

    Rudie, J. D. et al. Modification of the organization of functional and structural brain networks in autism. Neuroimage Clin. 2, 79-94 (2013).

  • 40

    Emerson, R. W. et al. Functional neuroimaging of 6-month-old infants at high risk predicts a diagnosis of autism at 24 months. Sci. Trad. Med. 9, eaag2882 (2017).

  • 41

    Lewis, J.D., Theilmann, R.J., Townsend, J. and Evans, A.C.The efficiency of the network in autism spectrum disorder and its relation to brain proliferation. Front. Hum. Neurosci. 7845 (2013).

  • 42

    Buckner, R.L., Andrews-Hanna, J.R. & Schacter, D.L.The default brain network: anatomy, function, and relevance to the disease. Ann. NY Acad. Sci. 1124, 1-38 (2008).

  • 43

    Whitfield-Gabrieli, S. & Nieto-Castanon, A. Conn: A functional connectivity toolkit for correlated and anticorrelated brain networks. Brain Connect. 2, 125-141 (2012).

  • 44

    Goldman, S.E. et al. Define the sleep phenotype in children with autism. Dev. Neuropsychol. 34560-573 (2009).

  • 45

    Adolphs, R. The social brain: neuronal basis of social knowledge. Annu. Rev. Psychol. 60693-716 (2009).

  • 46

    Arnsten, A. F. Constrained signaling pathways that alter the structure and function of the prefrontal cortex. Nat. Rev. Neurosci. ten410-422 (2009).

  • 47

    Guénolé, F. et al. Melatonin for sleep disorders in people with autism spectrum disorders: a systematic review and discussion. Sleep Med. Tower. 15379-387 (2011).

  • 48.

    Just, M.A., Keller, T.A., Malave, V.L., Kana, R.K. and Varma, S. Autism as a disorder of neuronal systems: a theory of frontal-posterior subconnectivity. Neurosci. Biobehav. Tower. 36, 1292-1313 (2012).

  • 49

    Moeller, S., Nallasamy, N., Tsao, D.Y. and Freiwald, W. A. ​​Functional connectivity of the macaque brain through states of stimulation and awakening. J. Neurosci. 295897-5909 (2009).

  • 50

    Vincent, J. L. et al. Intrinsic functional architecture in the anesthetized monkey brain. Nature 447, 83-86 (2007).

  • 51.

    Ke, Q. et al. TALEN-based generation of a cynomolgus monkey disease model for human microcephaly. Cell Res. 261048-1061 (2016).

  • 52

    Sri Kantha, S. & Suzuki, J. Quantification of sleep in marmoset, tamarind and squirrel monkeys by non-invasive actigraphy. Comp. Biochem. Physiol. A 144203-210 (2006).

  • 53

    Freund, J. et al. Emergence of individuality in genetically identical mice. Science 340756-759 (2013).

  • 54

    Bei, D. M. & Lafferty J. D. Models of Dynamic Subjects. In Proc. 23rd Machine Learning International Conference (2006).

  • 55

    Kalman, R. E. A new approach to linear filtering and prediction problems. J. basic engineer. 8234-45 (1960).

  • 56.

    Harlow, H. F. & Bromer, J. A. A test apparatus for monkeys. Psychol. Rec. 2434-436 (1938).

  • 57

    Harlow, H. F. The development of learning in the Rhesus monkey. A m. Sci. 47459-479 (1959).

  • 58

    Levin, E.D. & Bowman, R. E. Effect of prenatal or postnatal lead exposure on Hamilton's research in monkeys. Neurobehav. Toxicol. Teratol. 3391-394 (1983).

  • 59

    Frey, S. et al. A stereotaxic stereotaxic atlas and space for the monkey macaque based on MRI (monkey space of the INM). Neuroimage 551435-1442 (2011).

  • 60.

    Ashburner, J. SPM: a story. Neuroimage 62, 791-800 (2012).

  • 61.

    Behzadi, Y., Restom, K., J. Liau, and T. T. T. A component-based noise correction method (CompCor) for BOLD and fMRI infusion. Neuroimage 3790-101 (2007).

  • 62

    Deshpande, G., LaConte, S., Peltier, S. and Hu X. Integrated local correlation: a new measure of local consistency in fMRI data. Hum. Brain Mapp. 30, 13-23 (2009).

  • [ad_2]

    Source link