Researchers Design ‘Smart’ Surfaces to Repel Everything but Targeted Beneficial Exceptions



[ad_1]

“A coating that repels blood cells could potentially eliminate the need for medicines such as warfarin that are used after implants to cut the risk of clots,” says co-author Sara Imani, a McMaster Ph.D. student in Biomedical Engineering.

Still, she explains, a completely repellent coating also prevents the body from integrating the new valve into the tissue of the heart itself.

By designing the surface to permit adhesion only with heart tissue cells, the researchers are making it possible for the body to integrate the new valve naturally, avoiding the complications of rejection. The same would be true for other implants, such as artificial joints and stents used to open blood vessels.

“If you want a device to perform better and not be rejected by the body, this is what you need to do,” says co-author Maryam Badv, also a McMaster Ph.D. student in Biomedical Engineering. “It is a huge problem in medicine.”

Outside the body, selectively designed repellent surfaces could make diagnostic tests much more accurate by allowing only the particular target of a test—a virus, bacterium or cancer cell, for example—to stick to the biosensor that is looking for it, a critical advantage given the challenges of testing in complex fluids such as blood and urine.

The researchers, who collaborated with Jeffrey Weitz of the Thrombosis & Atherosclerosis Research Institute at Hamilton Health Sciences to understand the challenges related to making successful implants, are now working on the next stages of research to get their work into clinical use.



[ad_2]
Source link