A population of luminous accreting black holes with hidden mergers



[ad_1]

  • 1.

    Di Matteo, T., Springel, V. & Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 433, 604-607 (2005).

  • 2.

    Goulding, A. D. et al. Galaxy interactions rapid trigger black hole growth: an unprecedented view of the Hyper Suprime-Cam survey. Publ. Astron. Soc. Jpn 70, S37 (2018).

  • 3.

    Donley, J.L. et al. Evidence for merger-driven growth in luminous, high-z, obscured AGNs in the CANDELS / COSMOS field. Astrophys. J. 853, 63 (2018).

  • 4.

    Villforth, C. et al. Host galaxies of luminous z ~ 0.6 quasars: major mergers are not prevalent at the highest AGN luminosities. My. Not. R. Astron. Soc. 466, 812-830 (2017).

  • 5.

    Chang, Y.-Y. et al. Infrared selection of dark active galactic nuclei in the COSMOS field. Astrophys. J. Suppl. Ser. 233, 19 (2017).

  • 6.

    Glikman, E. et al. Major mergers host the most-bright red quasars at z ~ 2: a Hubble Space Telescope WFC3 / IR study. Astrophys. J. 806, 218 (2015).

  • 7.

    Kocevski, D. et al. Are Compton-thick AGNs the missing link between mergers and black hole growth? Astrophys. J. 814, 104 (2015).

  • 8.

    Koss, M. et al. A new population of Compton-thick AGNs identified using the spectral curvature above 10 keV. Astrophys. J. 825, 85 (2016).

  • 9.

    Hopkins, P. F. et al. A physical model for the origin of quasar lifetimes. Astrophys. J. 625, L71-L74 (2005).

  • 10.

    Baumgartner, W.H. et al. The 70 month Swift-BAT all-sky hard X-ray survey. Astrophys. J. Suppl. Ser. 207, 19 (2013).

  • 11.

    Koss, M. et al. BAT AGN spectroscopic survey. I. Spectral measurements, derived quantities, and AGN demographics. Astrophys. J. 850, 74 (2017).

  • 12.

    Ricci, C. et al. BAT AGN spectroscopic survey. V. X-ray properties of the Swift / BAT 70- month AGN catalog. Astrophys. J. Suppl. Ser. 233, 17 (2017).

  • 13.

    Ohyama, Y., Terashima, Y. & Sakamoto, K. Infrared and X-ray evidence of an AGN in the NGC 3256 southern nucleus. Astrophys. J. 805, 162 (2015).

  • 14.

    Barrows, R. S., Comerford, J.M., Greene, J.E. & Pooley, D.Spatially offset active galactic nuclei. II. Triggering in galaxy mergers. Astrophys. J. 838, 129 (2017).

  • 15.

    Fu, H., Myers, A.D., Djorgovski, S.G. & Yan, L. Mergers in double-peaked [O iii] active galactic nuclei. Astrophys. J. 733, 103 (2011).

  • 16.

    Haan, S. et al. The nuclear structure in nearby luminous infrared galaxies: Hubble Space NICMOS Telescope imaging of the GOALS sample. Astron. J. 141, 100 (2011).

  • 17.

    Van Wbadenhove, S. et al. Observability of dual active galactic nuclei in merging galaxies. Astrophys. J. 748, L7 (2012).

  • 18.

    Springel, V. The Cosmological Simulation Code GADGET-2. My. Not. R. Astron. Soc. 364, 1105-1134 (2005).

  • 19.

    Hopkins, P. F., Richards, G.T & Hernquist, L. An observational determination of the bolometric quasar luminosity function. Astrophys. J. 654, 731-753 (2007).

  • 20.

    Hunt, L. K. & Malkan, M. A. Circumnuclear structure and black hole fueling: Hubble Space Telescope NICMOS imaging of 250 active and normal galaxies. Astrophys. J. 616707-729 (2004).

  • 21.

    Capelo, P.R. et al. Growth and activity of black holes in galaxy with mbad ratios. My. Not. R. Astron. Soc. 447, 2123-2143 (2015).

  • 22.

    Verbiest, J. P. W. et al. The International Pulsar Timing Array: first data release. My. Not. R. Astron. Soc. 458, 1267-1288 (2016).

  • 23.

    Tang, Y., Haiman, Z. & MacFadyen, A. The late inspirational of supermbadive black hole binaries with circumbinary gas discs in the LISA band. My. Not. R. Astron. Soc. 476, 2249-2257 (2018).

  • 24.

    Sesana, A., Haiman, Z., Kocsis, B. & Kelley, L. Z. Testing the binary hypothesis: pulsating timing constraints on supermbadive black hole binary candidates. Astrophys. J. 856, 42 (2018).

  • 25.

    Mayer, L. Mbadive black hole in galaxy mergers; multiple regimes of orbital decay and interplay with gas inflows. Clbad. Quantum Gravity 30, 244008 (2013).

  • 26.

    Lang, R.N. & Hughes, S.A. Advanced localization of mbadive black hole coalescences with LISA. Clbad. Quantum Gravity 26, 094035 (2009).

  • 27.

    Mbadaro, E. et al. Roma-BZCAT: a multifrequency catalog of blazars. Astron. Astrophys. 495, 691-696 (2009).

  • 28.

    Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. Suppl. Ser. 117, 393-404 (1996).

  • 29.

    Blanton, M.R., Kazin, E., Muna, D., Weaver, B.A. & Price-Whelan, A. Improved background subtraction for the Sloan Digital Sky Survey images. Astron. J. 142, 31 (2011).

  • 30.

    de Vaucouleurs, G. et al. Third Reference Catalog of Bright Galaxies (Springer-Verlag, New York, 1991).

  • 31.

    Véron-Cetty, M. P. & Véron, P. A catalog of quasars and active nuclei: 13th edition. Astron. Astrophys. 518, A10 (2010).

  • 32.

    Patton, D. & Atfield, J. The luminosity dependence of the galaxy merger rate. Astrophys. J. 685, 235 (2008).

  • 33.

    Weigel, A. K., Schawinski, K., Treister, E., Trakhtenbrot, B. & Sanders, D. B. The fraction of AGNs in major merger galaxies and its luminosity dependence. My. Not. R. Astron. Soc. 476, 2308-2317 (2018).

  • 34.

    Davies, R.I. et al. Insights on the dusty torus and neutral torus of optical and X-ray obscuration in a complete volume limited hard X-ray AGN sample. Astrophys. J. 806, 127 (2015).

  • 35.

    Koss, M. et al. Host galaxy properties of the Swift BAT ultra-hard X-ray active active galactic nucleus. Astrophys. J. 739, 57 (2011).

  • 36.

    Abazajian, K. N. et al. The seventh data release of the Sloan Digital Sky Survey. Astrophys. J. Suppl. Ser. 182543-558 (2009).

  • 37.

    Blanton, M.R., Eisenstein, D., Hogg, D.W., Schlegel, D.J. & Brinkmann, J. Relationship between environment and the broadband optical properties of galaxies in the Sloan Digital Sky Survey. Astrophys. J. 629, 143 (2005).

  • 38.

    Kauffmann, G. et al. Stellar mbades and star training stories for 105 galaxies from the Sloan Digital Sky Survey. My. Not. R. Astron. Soc. 341, 33-53 (2003).

  • 39.

    Brinchmann, J. et al. The physical properties of star-forming galaxies in the low-redshift Universe. My. Not. R. Astron. Soc. 351, 1151-1179 (2004).

  • 40.

    Chary, R. & Elbaz, D. Interpreting the cosmic infrared background: constraints on the evolution of the dust-enshrouded star formation rate. Astrophys. J. 556562-581 (2001).

  • 41.

    Vivian, U. et al. Spectral energy distributions of local luminous and ultrtraluminous infrared galaxies. Astrophys. J. Suppl. Ser. 203, 9 (2012).

  • 42.

    Das Gupta, A., Cai, T. & Brown, L. D. Interval estimation for a binomial proportion. Stat. Sci. 16, 101-133 (2001).

  • 43.

    Hung, C.-L. et al. A comparison of the morphological properties between local and z ~ 1 infrared luminous galaxies: are local and high-z (U) Different LIRGs? Astrophys. J. 791, 63 (2014).

  • 44.

    Grogin, N.A. et al. CANDELS: the cosmic badembly near-infrared deep extragalactic legacy survey. Astrophys. J. Suppl. Ser. 197, 35 (2011).

  • 45.

    Barden M., Jahnke K. & Häußler B. FERENGI: Redshifting Galaxies from SDSS to GEMS, INTERNSHIPS, and COSMOS. Astrophys. J. Suppl. Ser. 175, 105 (2008).

  • 46.

    Springel, V. & Hernquist, L. Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation. My. Not. R. Astron. Soc. 339, 289-311 (2003).

  • 47.

    Narayan, R. & McClintock, J. E. Advection-dominated accretion and the black hole event horizon. New Astron. Rev. 51, 733-751 (2008).

  • 48.

    Kormendy, J. & Ho, L. C. Coevolution (or not) of supermbadive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511-653 (2013).

  • 49.

    Jonsson, P. SUNRISE: polychromatic dust radiative transfer in arbitrary geometries. My. Not. R. Astron. Soc. 372, 2-20 (2006).

  • 50.

    Jonsson, P., Groves, B. A. & Cox, T. J. High-resolution panchromatic spectral models of galaxies including photoionization and dust. My. Not. R. Astron. Soc. 403, 17-44 (2010).

  • 51.

    Snyder, G.F. et al. Modeling mid-infrared diagnoses of obscured quasars and starbursts. Astrophys. J. 768, 168 (2013).

  • 52.

    Blecha, L., Civano, F., Elvis, M. & Loeb, A. Constraints on the nature of CID-42: recoil kick or supermbadive black hole pair? My. Not. R. Astron. Soc. 428, 1341-1350 (2013).

  • 53.

    Leitherer, C. et al. Starburst99: synthesis models for galaxies with active star training. Astrophys. J. Suppl. Ser. 123, 3-40 (1999).

  • 54.

    Narayanan, D. et al. A physical model for z ~ 2 dust-obscured galaxies. My. Not. R. Astron. Soc. 407, 1701-1720 (2010).

  • 55.

    Groves, B. et al. Modeling the pan-spectral energy distribution of starburst galaxies. IV. The controlling parameters of the starburst SED. Astrophys. J. Suppl. Ser. 176, 438-456 (2008).

  • [ad_2]
    Source link