[ad_1]
Di Matteo, T., Springel, V. & Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 433, 604-607 (2005).
Goulding, A. D. et al. Galaxy interactions rapid trigger black hole growth: an unprecedented view of the Hyper Suprime-Cam survey. Publ. Astron. Soc. Jpn 70, S37 (2018).
Donley, J.L. et al. Evidence for merger-driven growth in luminous, high-z, obscured AGNs in the CANDELS / COSMOS field. Astrophys. J. 853, 63 (2018).
Villforth, C. et al. Host galaxies of luminous z ~ 0.6 quasars: major mergers are not prevalent at the highest AGN luminosities. My. Not. R. Astron. Soc. 466, 812-830 (2017).
Chang, Y.-Y. et al. Infrared selection of dark active galactic nuclei in the COSMOS field. Astrophys. J. Suppl. Ser. 233, 19 (2017).
Glikman, E. et al. Major mergers host the most-bright red quasars at z ~ 2: a Hubble Space Telescope WFC3 / IR study. Astrophys. J. 806, 218 (2015).
Kocevski, D. et al. Are Compton-thick AGNs the missing link between mergers and black hole growth? Astrophys. J. 814, 104 (2015).
Koss, M. et al. A new population of Compton-thick AGNs identified using the spectral curvature above 10 keV. Astrophys. J. 825, 85 (2016).
Hopkins, P. F. et al. A physical model for the origin of quasar lifetimes. Astrophys. J. 625, L71-L74 (2005).
Baumgartner, W.H. et al. The 70 month Swift-BAT all-sky hard X-ray survey. Astrophys. J. Suppl. Ser. 207, 19 (2013).
Koss, M. et al. BAT AGN spectroscopic survey. I. Spectral measurements, derived quantities, and AGN demographics. Astrophys. J. 850, 74 (2017).
Ricci, C. et al. BAT AGN spectroscopic survey. V. X-ray properties of the Swift / BAT 70- month AGN catalog. Astrophys. J. Suppl. Ser. 233, 17 (2017).
Ohyama, Y., Terashima, Y. & Sakamoto, K. Infrared and X-ray evidence of an AGN in the NGC 3256 southern nucleus. Astrophys. J. 805, 162 (2015).
Barrows, R. S., Comerford, J.M., Greene, J.E. & Pooley, D.Spatially offset active galactic nuclei. II. Triggering in galaxy mergers. Astrophys. J. 838, 129 (2017).
Fu, H., Myers, A.D., Djorgovski, S.G. & Yan, L. Mergers in double-peaked [O iii] active galactic nuclei. Astrophys. J. 733, 103 (2011).
Haan, S. et al. The nuclear structure in nearby luminous infrared galaxies: Hubble Space NICMOS Telescope imaging of the GOALS sample. Astron. J. 141, 100 (2011).
Van Wbadenhove, S. et al. Observability of dual active galactic nuclei in merging galaxies. Astrophys. J. 748, L7 (2012).
Springel, V. The Cosmological Simulation Code GADGET-2. My. Not. R. Astron. Soc. 364, 1105-1134 (2005).
Hopkins, P. F., Richards, G.T & Hernquist, L. An observational determination of the bolometric quasar luminosity function. Astrophys. J. 654, 731-753 (2007).
Hunt, L. K. & Malkan, M. A. Circumnuclear structure and black hole fueling: Hubble Space Telescope NICMOS imaging of 250 active and normal galaxies. Astrophys. J. 616707-729 (2004).
Capelo, P.R. et al. Growth and activity of black holes in galaxy with mbad ratios. My. Not. R. Astron. Soc. 447, 2123-2143 (2015).
Verbiest, J. P. W. et al. The International Pulsar Timing Array: first data release. My. Not. R. Astron. Soc. 458, 1267-1288 (2016).
Tang, Y., Haiman, Z. & MacFadyen, A. The late inspirational of supermbadive black hole binaries with circumbinary gas discs in the LISA band. My. Not. R. Astron. Soc. 476, 2249-2257 (2018).
Sesana, A., Haiman, Z., Kocsis, B. & Kelley, L. Z. Testing the binary hypothesis: pulsating timing constraints on supermbadive black hole binary candidates. Astrophys. J. 856, 42 (2018).
Mayer, L. Mbadive black hole in galaxy mergers; multiple regimes of orbital decay and interplay with gas inflows. Clbad. Quantum Gravity 30, 244008 (2013).
Lang, R.N. & Hughes, S.A. Advanced localization of mbadive black hole coalescences with LISA. Clbad. Quantum Gravity 26, 094035 (2009).
Mbadaro, E. et al. Roma-BZCAT: a multifrequency catalog of blazars. Astron. Astrophys. 495, 691-696 (2009).
Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. Suppl. Ser. 117, 393-404 (1996).
Blanton, M.R., Kazin, E., Muna, D., Weaver, B.A. & Price-Whelan, A. Improved background subtraction for the Sloan Digital Sky Survey images. Astron. J. 142, 31 (2011).
de Vaucouleurs, G. et al. Third Reference Catalog of Bright Galaxies (Springer-Verlag, New York, 1991).
Véron-Cetty, M. P. & Véron, P. A catalog of quasars and active nuclei: 13th edition. Astron. Astrophys. 518, A10 (2010).
Patton, D. & Atfield, J. The luminosity dependence of the galaxy merger rate. Astrophys. J. 685, 235 (2008).
Weigel, A. K., Schawinski, K., Treister, E., Trakhtenbrot, B. & Sanders, D. B. The fraction of AGNs in major merger galaxies and its luminosity dependence. My. Not. R. Astron. Soc. 476, 2308-2317 (2018).
Davies, R.I. et al. Insights on the dusty torus and neutral torus of optical and X-ray obscuration in a complete volume limited hard X-ray AGN sample. Astrophys. J. 806, 127 (2015).
Koss, M. et al. Host galaxy properties of the Swift BAT ultra-hard X-ray active active galactic nucleus. Astrophys. J. 739, 57 (2011).
Abazajian, K. N. et al. The seventh data release of the Sloan Digital Sky Survey. Astrophys. J. Suppl. Ser. 182543-558 (2009).
Blanton, M.R., Eisenstein, D., Hogg, D.W., Schlegel, D.J. & Brinkmann, J. Relationship between environment and the broadband optical properties of galaxies in the Sloan Digital Sky Survey. Astrophys. J. 629, 143 (2005).
Kauffmann, G. et al. Stellar mbades and star training stories for 105 galaxies from the Sloan Digital Sky Survey. My. Not. R. Astron. Soc. 341, 33-53 (2003).
Brinchmann, J. et al. The physical properties of star-forming galaxies in the low-redshift Universe. My. Not. R. Astron. Soc. 351, 1151-1179 (2004).
Chary, R. & Elbaz, D. Interpreting the cosmic infrared background: constraints on the evolution of the dust-enshrouded star formation rate. Astrophys. J. 556562-581 (2001).
Vivian, U. et al. Spectral energy distributions of local luminous and ultrtraluminous infrared galaxies. Astrophys. J. Suppl. Ser. 203, 9 (2012).
Das Gupta, A., Cai, T. & Brown, L. D. Interval estimation for a binomial proportion. Stat. Sci. 16, 101-133 (2001).
Hung, C.-L. et al. A comparison of the morphological properties between local and z ~ 1 infrared luminous galaxies: are local and high-z (U) Different LIRGs? Astrophys. J. 791, 63 (2014).
Grogin, N.A. et al. CANDELS: the cosmic badembly near-infrared deep extragalactic legacy survey. Astrophys. J. Suppl. Ser. 197, 35 (2011).
Barden M., Jahnke K. & Häußler B. FERENGI: Redshifting Galaxies from SDSS to GEMS, INTERNSHIPS, and COSMOS. Astrophys. J. Suppl. Ser. 175, 105 (2008).
Springel, V. & Hernquist, L. Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation. My. Not. R. Astron. Soc. 339, 289-311 (2003).
Narayan, R. & McClintock, J. E. Advection-dominated accretion and the black hole event horizon. New Astron. Rev. 51, 733-751 (2008).
Kormendy, J. & Ho, L. C. Coevolution (or not) of supermbadive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511-653 (2013).
Jonsson, P. SUNRISE: polychromatic dust radiative transfer in arbitrary geometries. My. Not. R. Astron. Soc. 372, 2-20 (2006).
Jonsson, P., Groves, B. A. & Cox, T. J. High-resolution panchromatic spectral models of galaxies including photoionization and dust. My. Not. R. Astron. Soc. 403, 17-44 (2010).
Snyder, G.F. et al. Modeling mid-infrared diagnoses of obscured quasars and starbursts. Astrophys. J. 768, 168 (2013).
Blecha, L., Civano, F., Elvis, M. & Loeb, A. Constraints on the nature of CID-42: recoil kick or supermbadive black hole pair? My. Not. R. Astron. Soc. 428, 1341-1350 (2013).
Leitherer, C. et al. Starburst99: synthesis models for galaxies with active star training. Astrophys. J. Suppl. Ser. 123, 3-40 (1999).
Narayanan, D. et al. A physical model for z ~ 2 dust-obscured galaxies. My. Not. R. Astron. Soc. 407, 1701-1720 (2010).
Groves, B. et al. Modeling the pan-spectral energy distribution of starburst galaxies. IV. The controlling parameters of the starburst SED. Astrophys. J. Suppl. Ser. 176, 438-456 (2008).
Source link