[ad_1]
Freeman, K. & Bland-Hawthorn, J. The new Galaxy: signatures of its formation. Annu. Rev. Astron. Astrophys. 40, 487–537 (2002).
Helmi, A., White, S. D. M. & Springel, V. The phase-space structure of cold dark matter haloes: insights into the Galactic halo. Mon. Not. R. Astron. Soc. 339, 834–848 (2003).
Carollo, D. et al. Two stellar components in the halo of the Milky Way. Nature 450, 1020–1025 (2007); erratum 451, 216 (2008).
Helmi, A., White, S. D. M., de Zeeuw, P. T. & Zhao, H. Debris streams in the solar neighbourhood as relicts from the formation of the Milky Way. Nature 402, 53–55 (1999).
Morrison, H. L. et al. Fashionably late? Building up the Milky Way’s inner halo. Astrophys. J. 694, 130–143 (2009).
Chiba, M. & Beers, T. C. Kinematics of metal-poor stars in the Galaxy. III. Formation of the stellar halo and thick disk as revealed from a large sample of non-kinematically selected stars. Astron. J. 119, 2843–2865 (2000).
Nissen, P. E. & Schuster, W. J. Two distinct halo populations in the solar neighbourhood – evidence from stellar abundance ratios and kinematics. Astron. Astrophys. 511, L10 (2010).
Beers, T. C. et al. Bright metal-poor stars from the Hamburg/ESO survey. II. A chemodynamical analysis. Astrophys. J. 835, 81 (2017).
Abolfathi, B. et al. The fourteenth data release of the Sloan Digital Sky Survey: first spectroscopic data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment. Astrophys. J. Suppl. Ser. 235, 42 (2018).
Gaia Collaboration. The Gaia mission. Astron. Astrophys. 595, A1 (2016).
Hayes, C. R. et al. Disentangling the Galactic halo with APOGEE. I. Chemical and kinematical investigation of distinct metal-poor populations. Astrophys. J. 852, 49 (2018).
Gaia Collaboration. Gaia Data Release 2: observational Hertzsprung– Russell diagrams. Astron. Astrophys. 616, A10 (2018).
Belokurov, V., Erkal, D., Evans, N. W., Koposov, S. E. & Deason, A. J. Co-formation of the Galactic disc and the stellar halo. Mon. Not. R. Astron. Soc. 478, 611–619 (2018).
Koppelman, H. H., Helmi, A. & Veljanoski, J. One large blob and many streams frosting the nearby stellar halo in Gaia DR2. Astrophys. J. 860, L11 (2018).
Haywood, M. et al. In disguise or out of reach: first clues about in-situ and accreted stars in the stellar halo of the Milky Way from Gaia DR2. Astrophys. J. 863, 113 (2018).
Cooper, A. P. et al. Galactic stellar haloes in the CDM model. Mon. Not. R. Astron. Soc. 406, 744–766 (2010).
Gaia Collaboration. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).
Villalobos, A. & Helmi, A. Simulations of minor mergers – I. General properties of thick discs. Mon. Not. R. Astron. Soc. 391, 1806–1827 (2008).
Nissen, P. E. & Schuster, W. J. Two distinct halo populations in the solar neighborhood. II. Evidence from stellar abundances of Mn, Cu, Zn, Y, and Ba. Astron. Astrophys. 530, A15 (2011).
Fernández-Alvar, E. et al. Disentangling the Galactic halo with APOGEE. II. Chemical and star formation histories for the two distinct populations. Astrophys. J. 852, 50 (2018).
Helmi, A. The stellar halo of the Galaxy. Astron. Astrophys. Rev. 15, 145–188 (2008).
Van der Marel, R. P., Kallivayalil, N. & Besla, G. Kinematical structure of the Magellanic System. Proc. IAU 256, 81–92 (2008).
Marigo, P. et al. A new generation of PARSEC-COLIBRI stellar isochrones including the TP-AGB phase. Astrophys. J. 835, 77 (2017).
Schuster, W. J., Moreno, E., Nissen, P. E. & Pichardo, B. Two distinct halo populations in the solar neighborhood. III. Evidence from stellar ages and orbital parameters. Astron. Astrophys. 538, A21 (2012).
Hawkins, K., Jofré, P., Gilmore, G. & Masseron, T. On the relative ages of the α-rich and α-poor stellar populations in the Galactic halo. Mon. Not. R. Astron. Soc. 445, 2575–2588 (2014).
Clementini, G. et al. Gaia Data Release 2: specific characterisation and validation of all-sky Cepheids and RR Lyrae stars. Preprint at https://arxiv.org/abs/1805.02079 (2018).
Gaia Collaboration. Gaia Data Release 2: kinematics of globular clusters and dwarf galaxies around the Milky Way. Astron. Astrophys. 616, A12 (2018).
VandenBerg, D. A., Brogaard, K., Leaman, R. & Casagrande, L. The ages of 55 globular clusters as determined using an improved ({rm{Delta }}{V}_{{rm{TO}}}^{{rm{HB}}}) method along with color–magnitude diagram constraints, and their implications for broader issues. Astrophys. J. 775, 134 (2013).
McMillan, P. J. The mass distribution and gravitational potential of the Milky Way. Mon. Not. R. Astron. Soc. 465, 76–94 (2017).
Behroozi, P. S., Wechsler, R. H. & Conroy, C. The average star formation histories of galaxies in dark matter halos from z = 0–8. Astrophys. J. 770, 57 (2013).
Schönrich, R., Binney, J. & Dehnen, W. Local kinematics and the local standard of rest. Mon. Not. R. Astron. Soc. 403, 1829–1833 (2010).
Gaia Collaboration. Gaia Data Release 2: mapping the Milky Way disc kinematics. Astron. Astrophys. 616, A11 (2018).
Helmi, A., Veljanoski, J., Breddels, M. A., Tian, H. & Sales, L. V. A box full of chocolates: the rich structure of the nearby stellar halo revealed by Gaia and RAVE. Astron. Astrophys. 598, A58 (2017).
Arenou, F. et al. Gaia Data Release 2: catalogue validation. Astron. Astrophys. 616, A17 (2018).
Jean-Baptiste, I. et al. On the kinematic detection of accreted streams in the Gaia era: a cautionary tale. Astron. Astrophys. 604, A106 (2017).
Villalobos, A. & Helmi, A. Simulations of minor mergers – II. The phase-space structure of thick discs. Mon. Not. R. Astron. Soc. 399, 166–176 (2009).
Morrison, H. L., Flynn, C. & Freeman, K. C. Where does the disk stop and the halo begin? Kinematics in a rotation field. Astron. J. 100, 1191–1222 (1990).
Majewski, S. R. et al. The Apache Point Observatory Galactic Evolution Experiment (APOGEE). Astron. J. 154, 94 (2017).
García Pérez, A. E. et al. ASPCAP: the APOGEE stellar parameter and chemical abundances pipeline. Astron. J. 151, 144 (2016).
Lindegren, L. et al. Gaia Data Release 2: the astrometric solution. Astron. Astrophys. 616, A2 (2018).
Butkevich, A. G., Klioner, S. A., Lindegren, L., Hobbs, D. & van Leeuwen, F. Impact of basic angle variations on the parallax zero point for a scanning astrometric satellite. Astron. Astrophys. 603, A45 (2017).
Robin, A. C. et al. Gaia Universe model snapshot. A statistical analysis of the expected contents of the Gaia catalogue. Astron. Astrophys. 543, A100 (2012).
Posti, L., Helmi, A., Veljanoski, J. & Breddels, M. The dynamically selected stellar halo of the Galaxy with Gaia and the tilt of the velocity ellipsoid. Astron. Astrophys. 615, A70 (2018).
Carollo, D., Martell, S. L., Beers, T. C. & Freeman, K. C. CN anomalies in the halo system and the origin of globular clusters in the Milky Way. Astrophys. J. 769, 87 (2013).
Brook, C. B., Kawata, D., Gibson, B. K. & Flynn, C. Galactic halo stars in phase space: a hint of satellite accretion? Astrophys. J. 585, L125–L129 (2003).
Gaia Collaboration. Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties. Astron. Astrophys. 595, A2 (2016).
Bonaca, A., Conroy, C., Wetzel, A., Hopkins, P. F. & Kereš, D. Gaia reveals a metal-rich, in situ component of the local stellar halo. Astrophys. J. 845, 101 (2017).
Deason, A. J., Belokurov, V., Koposov, S. E. & Lancaster, L. Apocenter pile-up: origin of the stellar halo density break. Astrophys. J. 862, L1 (2018).
Conroy, C. et al. They might be giants: an efficient color-based selection of red giant stars. Astrophys. J. 861, L16 (2018).
Belokurov, V. et al. The Hercules–Aquila cloud. Astrophys. J. 657, L89–L92 (2007).
Larsen, J. A., Cabanela, J. E. & Humphreys, R. M. Mapping the asymmetric thick disk. II. Distance, size, and mass of the Hercules thick disk cloud. Astron. J. 141, 130 (2011).
Source link