The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk



[ad_1]

  • 1.

    Freeman, K. & Bland-Hawthorn, J. The new Galaxy: signatures of its formation. Annu. Rev. Astron. Astrophys. 40, 487–537 (2002).

  • 2.

    Helmi, A., White, S. D. M. & Springel, V. The phase-space structure of cold dark matter haloes: insights into the Galactic halo. Mon. Not. R. Astron. Soc. 339, 834–848 (2003).

  • 3.

    Carollo, D. et al. Two stellar components in the halo of the Milky Way. Nature 450, 1020–1025 (2007); erratum 451, 216 (2008).

  • 4.

    Helmi, A., White, S. D. M., de Zeeuw, P. T. & Zhao, H. Debris streams in the solar neighbourhood as relicts from the formation of the Milky Way. Nature 402, 53–55 (1999).

  • 5.

    Morrison, H. L. et al. Fashionably late? Building up the Milky Way’s inner halo. Astrophys. J. 694, 130–143 (2009).

  • 6.

    Chiba, M. & Beers, T. C. Kinematics of metal-poor stars in the Galaxy. III. Formation of the stellar halo and thick disk as revealed from a large sample of non-kinematically selected stars. Astron. J. 119, 2843–2865 (2000).

  • 7.

    Nissen, P. E. & Schuster, W. J. Two distinct halo populations in the solar neighbourhood – evidence from stellar abundance ratios and kinematics. Astron. Astrophys. 511, L10 (2010).

  • 8.

    Beers, T. C. et al. Bright metal-poor stars from the Hamburg/ESO survey. II. A chemodynamical analysis. Astrophys. J. 835, 81 (2017).

  • 9.

    Abolfathi, B. et al. The fourteenth data release of the Sloan Digital Sky Survey: first spectroscopic data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment. Astrophys. J. Suppl. Ser. 235, 42 (2018).

  • 10.

    Gaia Collaboration. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

  • 11.

    Hayes, C. R. et al. Disentangling the Galactic halo with APOGEE. I. Chemical and kinematical investigation of distinct metal-poor populations. Astrophys. J. 852, 49 (2018).

  • 12.

    Gaia Collaboration. Gaia Data Release 2: observational Hertzsprung– Russell diagrams. Astron. Astrophys. 616, A10 (2018).

  • 13.

    Belokurov, V., Erkal, D., Evans, N. W., Koposov, S. E. & Deason, A. J. Co-formation of the Galactic disc and the stellar halo. Mon. Not. R. Astron. Soc. 478, 611–619 (2018).

  • 14.

    Koppelman, H. H., Helmi, A. & Veljanoski, J. One large blob and many streams frosting the nearby stellar halo in Gaia DR2. Astrophys. J. 860, L11 (2018).

  • 15.

    Haywood, M. et al. In disguise or out of reach: first clues about in-situ and accreted stars in the stellar halo of the Milky Way from Gaia DR2. Astrophys. J. 863, 113 (2018).

  • 16.

    Cooper, A. P. et al. Galactic stellar haloes in the CDM model. Mon. Not. R. Astron. Soc. 406, 744–766 (2010).

  • 17.

    Gaia Collaboration. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

  • 18.

    Villalobos, A. & Helmi, A. Simulations of minor mergers – I. General properties of thick discs. Mon. Not. R. Astron. Soc. 391, 1806–1827 (2008).

  • 19.

    Nissen, P. E. & Schuster, W. J. Two distinct halo populations in the solar neighborhood. II. Evidence from stellar abundances of Mn, Cu, Zn, Y, and Ba. Astron. Astrophys. 530, A15 (2011).

  • 20.

    Fernández-Alvar, E. et al. Disentangling the Galactic halo with APOGEE. II. Chemical and star formation histories for the two distinct populations. Astrophys. J. 852, 50 (2018).

  • 21.

    Helmi, A. The stellar halo of the Galaxy. Astron. Astrophys. Rev. 15, 145–188 (2008).

  • 22.

    Van der Marel, R. P., Kallivayalil, N. & Besla, G. Kinematical structure of the Magellanic System. Proc. IAU 256, 81–92 (2008).

  • 23.

    Marigo, P. et al. A new generation of PARSEC-COLIBRI stellar isochrones including the TP-AGB phase. Astrophys. J. 835, 77 (2017).

  • 24.

    Schuster, W. J., Moreno, E., Nissen, P. E. & Pichardo, B. Two distinct halo populations in the solar neighborhood. III. Evidence from stellar ages and orbital parameters. Astron. Astrophys. 538, A21 (2012).

  • 25.

    Hawkins, K., Jofré, P., Gilmore, G. & Masseron, T. On the relative ages of the α-rich and α-poor stellar populations in the Galactic halo. Mon. Not. R. Astron. Soc. 445, 2575–2588 (2014).

  • 26.

    Clementini, G. et al. Gaia Data Release 2: specific characterisation and validation of all-sky Cepheids and RR Lyrae stars. Preprint at https://arxiv.org/abs/1805.02079 (2018).

  • 27.

    Gaia Collaboration. Gaia Data Release 2: kinematics of globular clusters and dwarf galaxies around the Milky Way. Astron. Astrophys. 616, A12 (2018).

  • 28.

    VandenBerg, D. A., Brogaard, K., Leaman, R. & Casagrande, L. The ages of 55 globular clusters as determined using an improved ({rm{Delta }}{V}_{{rm{TO}}}^{{rm{HB}}}) method along with color–magnitude diagram constraints, and their implications for broader issues. Astrophys. J. 775, 134 (2013).

  • 29.

    McMillan, P. J. The mass distribution and gravitational potential of the Milky Way. Mon. Not. R. Astron. Soc. 465, 76–94 (2017).

  • 30.

    Behroozi, P. S., Wechsler, R. H. & Conroy, C. The average star formation histories of galaxies in dark matter halos from z = 0–8. Astrophys. J. 770, 57 (2013).

  • 31.

    Schönrich, R., Binney, J. & Dehnen, W. Local kinematics and the local standard of rest. Mon. Not. R. Astron. Soc. 403, 1829–1833 (2010).

  • 32.

    Gaia Collaboration. Gaia Data Release 2: mapping the Milky Way disc kinematics. Astron. Astrophys. 616, A11 (2018).

  • 33.

    Helmi, A., Veljanoski, J., Breddels, M. A., Tian, H. & Sales, L. V. A box full of chocolates: the rich structure of the nearby stellar halo revealed by Gaia and RAVE. Astron. Astrophys. 598, A58 (2017).

  • 34.

    Arenou, F. et al. Gaia Data Release 2: catalogue validation. Astron. Astrophys. 616, A17 (2018).

  • 35.

    Jean-Baptiste, I. et al. On the kinematic detection of accreted streams in the Gaia era: a cautionary tale. Astron. Astrophys. 604, A106 (2017).

  • 36.

    Villalobos, A. & Helmi, A. Simulations of minor mergers – II. The phase-space structure of thick discs. Mon. Not. R. Astron. Soc. 399, 166–176 (2009).

  • 37.

    Morrison, H. L., Flynn, C. & Freeman, K. C. Where does the disk stop and the halo begin? Kinematics in a rotation field. Astron. J. 100, 1191–1222 (1990).

  • 38.

    Majewski, S. R. et al. The Apache Point Observatory Galactic Evolution Experiment (APOGEE). Astron. J. 154, 94 (2017).

  • 39.

    García Pérez, A. E. et al. ASPCAP: the APOGEE stellar parameter and chemical abundances pipeline. Astron. J. 151, 144 (2016).

  • 40.

    Lindegren, L. et al. Gaia Data Release 2: the astrometric solution. Astron. Astrophys. 616, A2 (2018).

  • 41.

    Butkevich, A. G., Klioner, S. A., Lindegren, L., Hobbs, D. & van Leeuwen, F. Impact of basic angle variations on the parallax zero point for a scanning astrometric satellite. Astron. Astrophys. 603, A45 (2017).

  • 42.

    Robin, A. C. et al. Gaia Universe model snapshot. A statistical analysis of the expected contents of the Gaia catalogue. Astron. Astrophys. 543, A100 (2012).

  • 43.

    Posti, L., Helmi, A., Veljanoski, J. & Breddels, M. The dynamically selected stellar halo of the Galaxy with Gaia and the tilt of the velocity ellipsoid. Astron. Astrophys. 615, A70 (2018).

  • 44.

    Carollo, D., Martell, S. L., Beers, T. C. & Freeman, K. C. CN anomalies in the halo system and the origin of globular clusters in the Milky Way. Astrophys. J. 769, 87 (2013).

  • 45.

    Brook, C. B., Kawata, D., Gibson, B. K. & Flynn, C. Galactic halo stars in phase space: a hint of satellite accretion? Astrophys. J. 585, L125–L129 (2003).

  • 46.

    Gaia Collaboration. Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties. Astron. Astrophys. 595, A2 (2016).

  • 47.

    Bonaca, A., Conroy, C., Wetzel, A., Hopkins, P. F. & Kereš, D. Gaia reveals a metal-rich, in situ component of the local stellar halo. Astrophys. J. 845, 101 (2017).

  • 48.

    Deason, A. J., Belokurov, V., Koposov, S. E. & Lancaster, L. Apocenter pile-up: origin of the stellar halo density break. Astrophys. J. 862, L1 (2018).

  • 49.

    Conroy, C. et al. They might be giants: an efficient color-based selection of red giant stars. Astrophys. J. 861, L16 (2018).

  • 50.

    Belokurov, V. et al. The Hercules–Aquila cloud. Astrophys. J. 657, L89–L92 (2007).

  • 51.

    Larsen, J. A., Cabanela, J. E. & Humphreys, R. M. Mapping the asymmetric thick disk. II. Distance, size, and mass of the Hercules thick disk cloud. Astron. J. 141, 130 (2011).

  • [ad_2]
    Source link