Reconstruction of the history of the moon on the end of the accretion



[ad_1]

  • 1.

    Bottke, W.F. et al. Late stochastic accumulation on Earth, Moon and Mars. Science 3301527-1530 (2010).

  • 2

    Schlichting, H.E., Warren, P.H. & Yin, Q.-Z. The last stages of the formation of the terrestrial planet: dynamic friction and late veneer. Astrophysics J. 752, 8-16 (2012).

  • 3

    Morbidelli, A. et al. A sawtooth chronology for the first billions of years of lunar bombardment. Earth. Sci. Lett. 355-356, 144-151 (2012).

  • 4

    Neukum, G., Ivanov, B.A. and Hartmann, W.K. Crater records in the inner solar system in relation to the lunar reference system. Space Sci. Tower. 9655-86 (2001).

  • 5

    Day, J. M. D. & Walker, R. J. Exhaustion of highly siderophile elements in the Moon. Earth. Sci. Lett. 423114-124 (2015).

  • 6

    Day, J. M.D. et al. Isotope of osmium and systematic highly siderophilic elements of the lunar crust. Earth. Sci. Lett. 289595-605 (2010).

  • 7.

    Elkins-Tanton, L., Burgess, S. & Yin, Q. Z. The Ocean of Lunar Magma: Reconciling the Solidification Process with Lunar Petrology and Geochronology. Earth. Sci. Lett. 304, 326-336 (2011).

  • 8

    Borg, L.E. et al. Chronological proof that the moon is young or has no global magma ocean. Nature 477, 70-72 (2011).

  • 9

    Morbidelli, A. et al. The chronology of lunar bombardment: revisited. Icarus 305262-276 (2018).

  • ten.

    Canup, R. M. Form a Moon with a composition similar to Earth via a giant impact. Science 3381052-1055 (2012).

  • 11

    Cuk, M. and Stewart S. T. Making the Moon from a Rapidly Rotating Earth: A Giant Impact followed by Resonant Pinning. Science 3381047-1052 (2012).

  • 12

    Jones, J.H. & Drake, M.J. Basic formation and late history of the Earth. Nature 323470-471 (1986).

  • 13

    Morgan, J. W., Walker, R., Brandon, A. & Horan, M. F. Siderophile elements in the upper mantle and lunar breaches of the Earth: the synthesis of data suggests manifestations of the same final influx. Meteorit. Planet. Sci. 361257-1275 (2001).

  • 14

    Walker, R. J. Highly siderophilic elements of Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Chem. Erde Geochem. 69101-125 (2009).

  • 15

    Warren, P.H., Jerde, E.A. & Kallemeyn, G.W. Prisitine Lunar Rocks: Apollo 17 anorthosites. Proc. Lunar planet. Sci. Conf. 2151 to 61 (1991).

  • 16

    Ryder, G. Mass Flow in the Old Earth-Moon System and Benign Implications for the Origin of Life on Earth. J. Geophys. Res. 107 (E4), 5022 (2002).

  • 17

    Kraus, R.G. et al. Spraying planetesimal nuclei at the last stages of the formation of the planet. Nat. Geosci. 8269-272 (2015).

  • 18

    Artemieva, N.A. & Shuvalov, V.V. Numerical simulation of ejecta impacts at high speed following falling comets and asteroids on the Moon. Ground. Syst. Res. 42, 329-334 (2008).

  • 19

    Elbeshausen D. et al. The transition from circular impact crater to elliptical. J. Geophys. Res. 1182295-2309 (2013).

  • 20

    Feuvre, M. & Wieczorek, M. A. Nonuniform Cratering of the Moon and a Revised Chronology of the Crater of the Inner Solar System. Icarus 214, 1-20 (2011).

  • 21

    Shoemaker, E. M. in Physics and astronomy of the moon (Kopal ed., Z.) 283-359 (Academic, 1962).

  • 22

    Holsapple, K.A. & Housen, K.R. A crater and its ejecta: an interpretation of the profound impact. Icarus 191586-597 (2007).

  • 23

    Wieczorek, M.A. et al. The crust of the moon seen by GRAIL. Science 339671-675 (2013).

  • 24

    Norman, M.D. et al. Chronology, geochemistry and petrology of a ferroan noritic anorthosite clast from the Descartes gap 67215: age indices, origin, structure and impact of the History of the lunar crust. Meteorit. Planet. Sci. 38645-661 (2003).

  • 25

    Kleine, T. et al. Hf-W chronology of accretion and early evolution of asteroids and terrestrial planets. GEOCHIM. Cosmochim. Acta 735150-5188 (2009).

  • 26

    Borg, L.E. et al. A review of lunar chronology revealing a preponderance of ages from 4.34 to 4.37 Ga. Meteorit. Planet. Sci. 50715-732 (2015).

  • 27

    Nemchin, A. et al. Moment of the crystallization of the ocean of lunar magma forced by the oldest ziron. Nat. Geosci. 2133-1336 (2009).

  • 28

    Rubie, D.C. et al. Highly siderophilic elements were removed from the Earth's mantle by segregation of iron sulphide. Science 3531141-1144 (2016).

  • 29

    Miljković, K. et al. Excavation of the lunar mantle by basin formation impact events on the Moon. Earth. Sci. Lett. 409, 243-251 (2015).

  • 30

    Neumann, G.A. et al. Lunar impact basins revealed by gravity recovery and indoor laboratory measurements. Sci. Adv. 1, e1500852 (2015).

  • 31.

    Frey, H. in Recent Progress and Current Research Questions in Lunar Stratigraphy Flight. 477 (Ambrose, eds., W.A. & Williams, D.A.) 53-75 (Geological Society of America, 2011).

  • 32

    Kamata, S. et al. The relative moment of solidification of the ocean lunar magma and late intense bombardment deduced from strongly degraded basin structures. Icarus 250492-503 (2015).

  • 33

    Elkins-Tanton, L. Linked solidification of the magma-bound ocean and atmospheric growth for the Earth and Mars. Earth. Sci. Lett. 271, 181-191 (2008).

  • 34

    Day, J.MD, Pearson, D.G. and Taylor, L. A. Constraints related to highly siderophile elements for accretion and differentiation of the Earth-Moon system. Science 315217-219 (2007).

  • 35

    Day, J.MD, Brandon, A.D. & Walker, R. J. Highly siderophilic elements of Earth, Mars, Moon and Asteroids. Rev. Mineral. Geochem. 81161-238 (2016).

  • 36

    Day, J. M. D. Geochemical constraints on metal and sulphide residues in the sources of lunar mares basalts. A m. Mineral. 1031734-1740 (2018).

  • 37

    Walker, R.J., Horan, M.F., Shearer, C.K. & Papike, J.J. Low abundance of extremely siderophilic elements in the lunar mantle: evidence of prolonged late accumulation. Earth. Sci. Lett. 224399-413 (2004).

  • 38

    Taylor, G.J. & Wieczorek, M. A. Lunar bulk chemical composition: post-gravimetric recovery and re-evaluation of the inner laboratory. Phil Trans. A 37220130242 (2014).

  • 39

    Morgan, J.W., Gros, J., Takahashi, H. & Hertogen, H. Lunar breccia 73215: siderophile and volatile elements. Proc. Lunar Sci. Conf. 72189-2199 (1976).

  • 40

    Gros, J., Tahahashi, H., Hertogen, J. Morgan, J. W. and Anders, E. Composition of the projectiles having bombarded the lunar highlands. Proc. Lunar Sci. Conf. 72403-2425 (1976).

  • 41

    Norman, M.D., Bennett, V.C. & Ryder, G. Targeting impactors: Signatures of the siderophile elements of melting lunar impacts from Serenatatis. Earth. Sci. Lett. 202217-228 (2002).

  • 42

    Puchtel, I. S. et al. The systematics of osmium isotopes and highly siderophilic elements in lunar impact melt breaches: implications for the late accumulation history of the Moon and Earth. GEOCHIM. Cosmochim. Acta 723022-3042 (2008).

  • 43

    Gleißner, P. & Becker, H. Formation of Apollo 16 impactites and composition of late added material: isotope stresses Bones, highly siderophilic elements and abundance of sulfur. GEOCHIM. Cosmochim. Acta 200, 1-24 (2017).

  • 44

    Schultz, P. & Gault, D. E. Extensive global disasters caused by oblique impacts. Spec. Mush. Geol. Soc. A m. 247239-262 (1990).

  • 45

    Daly, R. T. & Shultz, P. H. Predictions of contaminant contamination on Ceres based on hypervelocity impact experiments. Geophysics Res. Lett. 42, 7890-7898 (2015).

  • 46

    Daly, R. T. & Shultz, P. H. Sending a projectile component to the Vestan Regolith. Icarus 2649-19 (2016).

  • 47

    Daly, R. T. & Schultz, P. H. Preservation of projectiles during oblique hypervelic impacts. Meteorit. Planet. Sci. 54, 1364-1390 (2018).

  • 48.

    Thompson, S. L. & Lauson, H. S. Improvements to GRAPH D: Hydrodynamic Radiation Code III: Revised Analytical Analysis Equations. Report SC-RR-71 0714 (Sandia National Laboratory, 1972).

  • 49

    Benz, W. et al. The origin of the Moon and the assumption of a single impact III. Icarus 81113-131 (1989).

  • 50

    Lee, D.-C. & Halliday, A. N. Core formation on Mars and differentiated asteroids. Nature 388854-857 (1997).

  • 51.

    Davison, T.M. et al. Numerical modeling of oblique hypervelocity impacts on highly ductile targets. Meteorit. Planet. Sci. 461510-1524 (2011).

  • 52

    Potter, R. W. et al. in Large meteorite impacts and planetary evolution V (Osinski eds., G.R. & Kring, D.A.) 99-113 (Lunar and Planetary Institute, 2015).

  • 53

    Marchi, S. et al. A new chronology for the moon and mercury. Astron. J. 1374936-4948 (2009).

  • 54

    Collins, G.S., Melosh, H.J. and Ivanov, B.A. Damage and strain modeling in impact simulations. Meteorit. Planet. Sci. 39217-231 (2004).

  • 55

    Ahrens, T. J. and O'Keefe, J. D. Fusion and shock by evaporation of lunar rocks and minerals. Moon 4214-249 (1972).

  • 56.

    Pierazzo, E., Vickery, A.M. and Melosh, H.J. A reassessment of the impact melt product. Icarus 127408-423 (1997).

  • 57

    Pierazzo, E. & Melosh, H. J. Modeling Hydrocode of oblique impacts: the fate of the projectile. Meteorit. Planet. Sci. 35, 117-130 (2000).

  • 58

    Marchi, S. et al. Mixing and burial widespread of the Hadean crust of the Earth due to asteroid impacts. Nature 511578-582 (2014).

  • 59

    Schultz, P.H. & Sugita, S. Fate of the Chicxulub impactor. In 28th Annu. Lunar planet. Sci. Conf. 1261-1262 (1997).

  • 60.

    Collins, G. S., K. Miljkovic and T. Davison. The effect of planetary curvature on the crater ellipticity of impact. EPSC Abstr. 8EPSC2013-989 (2013).

  • 61.

    Bottke, W.F. et al. Dating of the impact event forming the Moon with asteroid meteorites. Science 348, 321-323 (2015).

  • 62

    Laneuville, M., Wieczorek, M. and Breuer, D. Asymmetric Thermal Evolution of the Moon. J. Geophys. Res. planets 1181435-1452 (2013).

  • 63.

    Ivanov, B. A. and Artemieva, N. A. in Catastrophic events and mass extinctions: impacts and consequences Flight. 356 (eds Koeberl, C. and MacLeod, K.G.) 619-630 (Geological Society of America, 2002).

  • 64.

    Miljkovic, K. et al. Asymmetric distribution of the lunar impact basins caused by variations in the properties of the target. Science 342724-726 (2013).

  • 65.

    Freed, A. M. et al. The formation of the Masonic lunar basins of impact to the contemporary form. J. Geophys. Res. 119, 2378-2397 (2014).

  • 66.

    Potter, R.W.K. et al. Limit the size of the impact of the South Pole-Aitken basin. Icarus 220730-743 (2012).

  • 67.

    Zhu, M. -H. et al. Numerical modeling of ejecta distribution and eastern basin formation. J. Geophys. Res. 1202118-2134 (2015).

  • 68.

    Melosh, H. J. The crater by impact: a geological process (Oxford Univ Press, 1989).

  • 69

    Joy, K.H. et al. Direct detection of projectile relics at the end of the lunar basin formation. Science 3361426-1429 (2012).

  • 70.

    Liu, J.G. et al. Different impactors in the Apollo 15 and 16 impact fusion rocks: evidence from isotopes of osmium and highly siderophilic elements. GEOCHIM. Cosmochim. Acta 155, 122-153 (2015).

  • 71.

    Croft, S. K. Scaling Complex Craters. Proc. Lunar planet. Sci. Conf. 16828-842 (1985).

  • 72.

    McKinnon, W.B. & Schenk, P.M. Ejecta general coverage of the Moon and Mercury and interference to projectile populations. Lunar planet. Sci. XVI544-545 (1985).

  • 73.

    Wilhelms, D. E. The geological history of the moon. USGS Professional Paper 1348 (US Geological Survey, 1987).

  • 74.

    Miljkovic, K. et al. Elusive formation of pools of impact on the young moon. In Proc. 48th lunar planetary scientific conference 1361 (2017).

  • 75.

    Gault, D. E. & Wedekind, J. A. Experimental studies of oblique impact. In Proc. 9th Lunar Conference on Planetary Science 3843-3875 (1978).

  • 76.

    Pierazzo, E. & Melosh, H. J. Cast iron production in oblique impacts. Icarus 145, 252-261 (2000).

  • 77.

    Pierazzo, E. and Melosh, H. J. Understanding the oblique impacts of experiments, observations and modeling. Annu. Rev. Earth Planet. Sci. 28141-167 (2000).

  • 78.

    Jones, A. P. et al. The induced melting by the impact and development of large igneous provinces. Earth. Sci. Lett. 202551-561 (2002).

  • 79.

    Kendall, J. D. and Melosh, H. J. Differential planetesimal impacts in an ocean of terrestrial magma: becoming iron core. Earth. Sci. Lett. 448, 24-33 (2016).

  • 80.

    Shuvalov, V.V. et al. Crater ejecta: markers of impact disasters. Phys. Solid Earth 48, 241-255 (2012).

  • [ad_2]

    Source link