Deer Antlers Couldn’t Grow So Fast Without These Genes



[ad_1]

Every spring, male deer undertake a unique biological ritual: sprouting and rapidly regrowing their massive, spiky antlers.

A complex matrix of bone, living tissue and nerve endings, deer antlers can reach 50 inches long and weigh more than 20 pounds before they are shed in winter. Not only are the antlers useful in attracting mates and fighting, they qualify deer as the only mammal that can regrow lost body parts.

Now, researchers say they have identified the two genes primarily responsible for antler regeneration in one species, red deer. The study, reported Tuesday in the Journal of Stem Cell Research and Therapy, notes that these genes are also found in humans, potentially opening new avenues of research into bone trauma and diseases.

“Deer antler formation shares similar biological mechanisms with human bone growth, but deer antlers grow much faster,” said Peter Yang, an orthopedic researcher at the Stanford University School of Medicine and senior author of the study. Perhaps by studying the newly identified genes in humans, scientists may be able to developed treatments that could “reproduce the rapid bone growth of deer antlers in human bone,” and provide relief for people who suffer ailments like osteoporosis.

The team eventually narrowed their focus to two genes, uhrf1 and s100a10, both of which have previously been linked to bone development in humans. They found that when the uhrf1 gene was shut down, the rate of bone growth in the mice significantly slowed. And when the s100a10 gene was put into overdrive, calcium deposits increased and the engineered cells mineralized more rapidly.

Dr. Yang and his team concluded that uhrf1 and s100a10 work in tandem to generate rapid antler growth in deer: uhrf1 promotes tissue generation, and s100a10 supports the hardening, or mineralization, of that tissue.

[ad_2]
Source link