Monday , December 10 2018
Home / Others / Ultra-ultraviolet refractive optics | Nature

Ultra-ultraviolet refractive optics | Nature



  • 1.

    Snigirev, A., Kohn, V., Snigireva, I. & Lengeler, B. A compound refractive lens for high energy X-ray focusing. Nature 38449-51 (1996).

  • 2

    Ferray, M. et al. Multi-harmonic conversion of the 1064 nm radiation in noble gases. J. Phys. B 21, L31 (1988).

  • 3

    Rocca, J. J. Flexible X-ray table lasers. Rev. Sci. instrum. 703799-3827 (1999).

  • 4

    Giulietti, D. & Gizzi, L. A. X-ray emission from laser-produced plasmas. Riv. Nuovo Cim. 21, 1-93 (1998).

  • 5

    Marr, G. V. Synchrotron Radiation Handbook: Vacuum and Ultra-Violet Vacuum X-Ray Procedures Flight. 2 (Elsevier, Amsterdam, 2013).

  • 6

    Allaria, E. et al. Very consistent and stable pulses of free electron laser seeded with Fermi in the extreme ultraviolet. Nat. Photon. 6699-704 (2012).

  • 7.

    Baez, A. V. A freestanding metal Fresnel zone plate for focusing ultra-violet and soft X-rays. Nature 186958 (1960).

  • 8

    Röntgen, W. C. Über eine neue Art von Strahlen: Vorläufige Mittheilung. Sitzungsber. Phys. Med. Gesell. Wurzburg (1895).

  • 9

    Santoro, G. et al. Use of the intermediate focus for grazing incidence low angle and wide angle X-ray scattering experiments on the P03 light line of PETRA III, DESY. Rev. Sci. instrum. 85043901 (2014).

  • ten.

    Chollet, M. et al. The X-ray pump-probe instrument of the Linac coherent light source. J. Synchrotron Radiat. 22503-507 (2015).

  • 11

    Heimann, P. et al. Refractive lenses composed as pre-focusing optics for X-ray X-ray radiation. J. Synchrotron Radiat. 23425-429 (2016).

  • 12

    Lengeler, B. et al. A microscope for hard x-rays based on parabolic compound refractive lenses. Appl. Phys. Lett. 743924-3926 (1999).

  • 13

    Schroer, C.G. et al. X-ray nanoprobe based on refractive X-ray lenses. Appl. Phys. Lett. 87124103 (2005).

  • 14

    Meijer, J.-M. et al. Observation of solid-solid transitions in 3D crystals of colloidal superballs. Nat. Common. 814352 (2017).

  • 15

    Schroer, C.G. et al. Consistent X-ray diffraction imaging with nanofocused illumination. Phys. Rev. Lett. 101090801 (2008).

  • 16

    Wang, Y., Yun, W. and Jacobsen, C. Fresnel Achromatic Optics for Very Wide Band Imaging in Extreme Ultraviolet and X-rays. Nature 42450 (2003).

  • 17

    Pan, H. et al. Low chromatic Fresnel lens for wide band attosecond XUV pulse applications. Opt. Express 24, 16788 to 16798 (2016).

  • 18

    Hahn, E. L. Nuclear induction due to free Larmor precession. Phys. Tower. 77297-298 (1950).

  • 19

    Wu, M., S. Chen, S. Camp, S. Schafer & M. B. Gaarde. Theory of attosecond transient absorption in strong field. J. Phys. B 49, 062003 (2016).

  • 20

    Bengtsson, S. et al. Spatio-temporal control of free disintegration in the extreme ultraviolet. Nat. Photon. 11, 252-258 (2017).

  • 21

    Liao, C.T., Sandhu, A., Camp, S., Schafer, KJ and Gaarde, MB Beyond the Single-atom Response in Absorption Curves: Dense Helium Probes, Treated laser, with attosecond pulse trains. Phys. Rev. Lett. 114143002 (2015).

  • 22

    Schütte, B., Arbeiter, M., Fennel, T., Vrakking, MJJ and Rouzée, A. Clusters of rare gases in intense ultraviolet pulses from a source of harmonic order high. Phys. Rev. Lett. 112, 073003 (2014).

  • 23

    Semushin, S. & Malka, V. Design of high density gas jet nozzles for the production of laser targets. Rev. Sci. instrum. 722961-2655 (2001).

  • 24

    Tzallas, P., Charalambidis, D., Papadogiannis, N.A., Witte, K. and Tsakiris, G.D. Direct observation of an attosecond light coupling. Nature 426267 (2003).

  • 25

    Takahashi, E.J., Lan, P., Mücke, O.D., Nabekawa, Y. and Midorikawa, K. Attosecond, nonlinear optics using single attosecond pulses at the gigawatt scale. Nat. Common. 42691 (2013).

  • 26

    Manschwetus, B. et al. Dual two-photon neon ionization using an intense attosecond pulse train. Phys. Rev. AT 93, 061402 (2016).

  • 27

    Barillot, T.R. et al. Towards XUV pump-probe experiments in femtosecond to sub-femtosecond regime: new measurement of the two-photon helium ionization cross-section. Chem. Phys. Lett. 683, 38-42 (2017).

  • 28

    Rupp, D. et al. Consistent diffractive imaging of unique helium nanodroplets with a high harmonic generation source. Nat. Common. 8493 (2017).

  • 29

    Flögel, M. et al. Rabi oscillations in extreme ultraviolet ionization of atomic argon. Phys. Rev. AT 95021401 (2017).

  • 30

    Schafer, K. J. & Kulander, K. C. Generation of high harmonics from ultra-fast pump lasers. Phys. Rev. Lett. 78638 to 641 (1997).

  • 31.

    Frühling, U. et al. Single scanning X-ray camera driven by a terahertz field. Nat. Photon. 3, 523 (2009).

  • 32

    Mauritsson, J. et al. Measurement and control of the frequency modulation rate of high order harmonic pulses. Phys. Rev. AT 70021801 (2004).

  • 33

    Valentin, C. et al. Spectral selection of high harmonics via spatial filtering. In High brightness sources and light interactions HW3A.3 (Optical Society of America, 2018).

  • 34

    Neidel, C. et al. Probe the molecular dipoles as a function of time on the attosecond time scale. Phys. Rev. Lett. 111033001 (2013).

  • 35

    Drescher, L. et al. Communication: XUV transient absorption spectroscopy of the photodissociation of iodomethane and iodobenzene. J. Chem. Phys. 145011101 (2016).

  • 36

    Galbraith, M.C.E. et al. Femtosecond passage of conical intersections in the benzene cation. Nat. Common. 81018 (2017).

  • 37

    He, X. et al. Spatial and spectral properties of high order harmonic emission in argon for seeding applications. Phys. Rev. AT 79063829 (2009).

  • 38

    Gademann, G., Ple, F., Paul, P.-M. & Vrakking, M. J. J. Stabilization of the carrier envelope phase of a terawatt modulated pulse amplifier for the generation of intense isolated attosecond pulses. Opt. Express 1924922 (2011).

  • 39

    Born, M. & Wolf, E. Principles of optics 7th enlarged edition (Cambridge Univ Press, Cambridge, 1999).

  • 40

    Wiese, W. L. Smith, W. & Glennon, B.M. Probabilities of atomic transition: hydrogen by neon. Technical Report, National Standardized Reference Data System. (NBS, 1966).

  • 41

    Wiese, W. L. Smith, W. & Miles, B.M. Probability of atomic transition: sodium by calcium. Technical Report, National Standard Reference Data System (NBS, 1969).


  • Source link