The role of miniaturization in the evolution of the jaw and the middle ear of mammals



[ad_1]

  • 1.

    Kemp, T. S. The origin and evolution of mammals (Oxford Univ Press, Oxford, 2005).

  • 2.

    Kielan-Jaworowska, Z. et al. Mammals of the dinosaur era: origins, evolution and structure (Columbia Univ Press, New York, 2004).

  • 3.

    Crompton, A. W. in Studies on the evolution of vertebrates (Joysey eds., K.A. & Kemp, T.S.) 231-253 (Oliver & Boyd, Edinburgh, 1972).

  • 4.

    Luo, Z.-X. Transformation and diversification in the early evolution of mammals. Nature 4501011-1019 (2007).

  • 5.

    Crompton, A.W. & Hylander, W.L. The ecology and biology of mammalian reptiles resembling (Hotton eds, N. III et al.) 263-282 (Smithsonian Institution, Washington, 1986).

  • 6.

    Bramble, D. M. Origin of the mammalian food complex: models and mechanisms. Paleobiology 4, 271-301 (1978).

  • 7.

    Barghusen, H. R. in Morphology of the maxillo-mandibular apparatus (Schumacher ed., G.H.) 26-32 (Georg Thieme, Leipzig, 1972).

  • 8.

    DeMar, R. & Barghusen, H. R. Mechanics and evolution of the synapsid jaw. Evolution 26622-637 (1972).

  • 9.

    Luo, Z.-X. Models of development in the Mesozoic evolution of mammalian ears. Annu. Rev. School. Evol. Syst. 42, 355-380 (2011).

  • ten.

    Allin, E. F. Evolution of the middle ear of mammals. J. Morphol. 147, 403-437 (1975).

  • 11.

    Sidor, C. A. Evolutionary trends and origin of the lower jaw of mammals. Paleobiology 29, 605-640 (2003).

  • 12.

    Manley, G. A. Channels of evolution to the mammalian cochlea. J. Assoc. Res. Otolaryngol. 13, 733-743 (2012).

  • 13.

    Luo, Z.-X. et al. New evidence of the evolution of the mammalian ear and the adaptation of food in a Jurassic ecosystem. Nature 548, 326-329 (2017).

  • 14.

    Reichert, C. in Archiv für Anatomy, Physiology und wissenschaftliche Medicin (Müller ed., J.) 120-222 (W. Thome, Berlin, 1837).

  • 15.

    Gaupp, E.W. T. Die Reichertsche Theorie (Hammer-, Amboss and Kieferfrage). Archiv für Anatomy and Entwicklungsgeschichte 19121-426 (1913).

  • 16.

    Urban, D.J. et al. A new development mechanism for the separation of ossicles from the middle ear of mammals of the jaw. Proc. R. Soc. Lond. B 284, 20162416 (2017).

  • 17.

    Anthwal, N. Urban, D.J., Luo, Z. X., Sears, K.E. and Tucker, A. A. Cartilage Degradation. S. Meckel gives clues about the evolution of the middle ear in mammals. Nat. School. Evol. 1, 0093 (2017).

  • 18.

    Hylander, W. L. The functional significance of the mandibular form of primates. J. Morphol. 160223-239 (1979).

  • 19.

    Herring, S.W., Rafferty, K.L., Liu, Z.J. and Marshall, C.D.Jaw and skull muscles in mammals: the biomechanics of mastication. Comp. Biochem. Physiol. A 131, 207-219 (2001).

  • 20.

    Liu, Z. J. and Herring, S. W. Bone surface stresses and internal bone pressures at the jaw joint of the miniature pig during contraction of the masticatory muscles. Camber. Biol Oral. 45, 95-112 (2000).

  • 21.

    Crompton, A. W. in Functional Morphology in Vertebrate Palaeontology (Thomason ed., J.J.) 55-75 (Cambridge Univ Press, Cambridge, 1995).

  • 22.

    Lautenschlager, S., Gill, P., Luo, Z. X., Fagan, M., J. & Rayfield, E. Morphological Evolution of the Mammalian Jaw Adductor Complex. Biol. Rev. Camb. Philos. Soc. 92, 1910-1940 (2017).

  • 23.

    Reed, D. A., Iriarte-Diaz, J. & Diekwisch, T. G. A three-dimensional analysis of the free body describing the variation of the musculoskeletal configuration of the lower jaw of the cynodont. Evol. dev. 18, 41-53 (2016).

  • 24.

    Rowe, T. in Phylogeny of mammals (Eds Szalay, F.S. et al.) 129-145 (Springer, New York, 1993).

  • 25.

    Kemp, T. S. The origin of higher taxa: macroevolution processes and mammalian cases. Acta Zool. 88, 3-22 (2007).

  • 26.

    Hanken, J. & Wake, D. B. Miniaturization of body size: organismal consequences and evolutionary importance. Annu. Rev. School. Syst. 24501-519 (1993).

  • 27.

    Gill, P.G. et al. Food specializations and diversity in the diet of the first mammalian strains. Nature 512, 303-305 (2014).

  • 28.

    Close, R.A., Friedman, M., Lloyd, G.T. and Benson, R. B. Evidence for Adaptive Radiation in Jurassic Environment in Mammals. Curr. Biol. 25, 2137-2142 (2015).

  • 29.

    Pacheco, C. P., Martinelli, A. G., Pavanatto, A. E., Soares, M. B. and Dias-da-Silva, S. Prozostrodon brasiliensis, a probanognathian cynodonte of the Upper Triassic of Brazil: second recording and improvements of his dental anatomy. Hist. Biol. 30475-485 (2017).

  • 30.

    Lautenschlager, S. Rebuilding the Past: Methods and Techniques for the Digital Restoration of Fossils. R. Soc. Open Sci. 3, 160342 (2016).

  • 31.

    Lautenschlager, S. Cranial and the performance of the bite force of Erlikosaurus andrewsi: a new approach for digital muscle reconstructions. J. Anat. 222, 260-272 (2013).

  • 32.

    Lautenschlager, S. Estimation of cranial musculoskeletal constraints in theropod dinosaurs. R. Soc. Open Sci. 2 persons, 150495 (2015).

  • 33.

    Thomason, J. J. Cranial strength versus estimated bite forces in some mammals. Can. J. Zool. 69, 2326-2333 (1991).

  • 34.

    Ashman, R. B. and Rho, J. Y. Elastic modulus of the trabecular bone material. J. Biomech. 21177-181 (1988).

  • 35.

    Curtis, N. et al. Predict muscle activation patterns from movement and anatomy: Model the skull of Sphenodon (Diapsida: Rhynchocephalia). J. R. Soc. Interface 7, 153-160 (2010).

  • 36.

    Dumont, E. R., Grosse, I. R. and Slater, G. J. Requirements for comparing the performance of finite element models of biological structures. J. Theor. Biol. 256, 96-103 (2009).

  • 37.

    Bright, J. A. The importance of craniofacial sutures in the biomechanical finite element models of domestic pigs. PLoS ONE 7, e31769 (2012).

  • 38.

    R Core Team. A: A language and an environment for statistical computing
    https://www.r-project.org/ (R Foundation for Statistical Informatics, Vienna, 2017).

  • [ad_2]
    Source link