[ad_1]
NASA's Jet Propulsion Laboratory
<img data-attachment-id = "85503" data-permalink = "http://www.clarksvilleonline.com/2011/08/05/salt-water-may-flow-on-mars/nasa-2/" data -orig-file = "http://www.clarksvilleonline.com/wp-content/uploads/2011/08/NASA.jpg" data-orig-size = "200,165" data-comments-opened = "1" data- Image-meta = "{" aperture ":" 0 "," credit ":" "," camera ":" "," caption ":" "," created_timestamp ":" 0 "," copyright ":" ", "focal_length": "0", "iso": "0", "shutter_speed": "0", "title": ""} "data-image-title =" NASA – National Aeronautics and Space Administration "data-image -description = "
NASA – logo – National Aeronautics and Space Administration
"data-medium-file =" http://www.clarksvilleonline.com/wp-content/uploads/2011/08/NASA.jpg "data-large-file =" http://www.clarksvilleonline.com/wp -content / uploads / 2011/08 / NASA.jpg "class =" alignleft size-full wp-image-85503″ title=”NASA – National Aeronautics and Space Administration "src =" http://www.clarksvilleonline.com/wp-content/uploads/2011/08/NASA.jpg "alt =" NASA – National Aeronautics and Space Administration "width =" 200 "height =" 165 "/>Pasadena, CA NASA's Voyager missions during their flybys of the gas-giant world in 1979. The JunoCam aboard camera NASA's Juno mission to Jupiter has also imaged the atmosphere.
JunoCam data has detected atmospheric wave trains, towering atmospheric structures that are more complicated than Jupiter's equator.
The JunoCam imager has calculated smaller distances between individual waves in these trains than ever seen before. This research provides valuable information on both the dynamics of Jupiter's atmosphere and its structure in the regions underneath the waves.
"JunoCam has counted more than any other spacecraft mission since Voyager," said Glenn Orton, a Juno scientist from NASA's Jet Propulsion Laboratory in Pasadena, California. "The trains, which consist of as many as two or more dozen, can have a distance of about 40 miles (65 kilometers) and as many as about 760 miles (1,200 kilometers). 6 miles (10 kilometers) high. "The shadow of the wave structure in one image.
Most of the waves are seen in elongated wave trains, spread out in an east-west direction, with waves crests that are perpendicular to the orientation of the train. Other fronts in similar wave trains tilt significantly with respect to the orientation of the wave train, and still other wave trains follow the slanted or meandering paths.
"The waves can appear close to other Jovian atmospheric features, near vortices or along flow lines, and others exhibit no relationship with anything nearby," said Orton. "Some wave trains appear as if they are converging, and others appearing to be overlapping, possibly at two different atmospheric levels. In one case, wave fronts appear to be radiating outward from the center of a cyclone. "
Although analysis is ongoing, most waves are expected to be atmospheric gravity waves – up-and-down ripples that form in the atmosphere above something that disturbs air flow, such as a thunderstorm updraft, disruptions of flow around other features, or from some other disturbance that JunoCam does not detect.
The JunoCam instrument is uniquely qualified to make such a discovery. JunoCam is a color, visible-light camera which offers a wide-angle view of the world of Jupiter's poles and cloud tops. As Juno's eyes, it helps provide context for the spacecraft's other instruments. JunoCam was included on the spacecraft primarily for public engagement purposes, although its images are helpful to the science team.
Juno launched on August 5th, 2011, from Cape Canaveral, Florida, and arrived in orbit around Jupiter on July 4th, 2016. To date, it has completed 15 science passes over Jupiter. Juno's 16th Science Pass will be on October 29th.
During these flybys, Juno is probing the cloud cover of Jupiter and studying its aurora to learn more about the planet's origins, structure, atmosphere and magnetosphere.
JPL conducts the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio.
The Juno Mission is part of the New Frontiers Program run by NASA's Marshall Space Flight Center in Huntsville, Alabama, for the Science Mission Directorate. Lockheed Martin Space Systems in Denver, Colorado, built the spacecraft. JPL is a division of Caltech in Pasadena, California.
More information on the Juno mission is available at:
https://www.nasa.gov/juno
https://www.missionjuno.swri.edu
The audience can follow the mission on Facebook and Twitter at:
http://www.facebook.com/NASAJuno
http://www.twitter.com/NASAJuno
Related Stories
sections
Technology
topics
Atmosphere, Caltech, Cape Canaveral FL, Denver CO, Jupiter, Lockheed Martin Space Systems, NASA, NASA's Jet Propulsion Laboratory, NASA's Juno Spacecraft, NASA's Marshall Space Flight Center, NASA's Science Mission Directorate, NASA's Voyager, National Aeronautics and Space Administration, Pasadena CA, San Antonio TX, Southwest Research Institute
[ad_2]
Source link