A separate vortex ring underlies dandelion theft



[ad_1]

  • 1.

    Lentink, D., Dickson, W.B., van Leeuwen, J.L. and Dickinson, M.H. Prominent vortices increase the lift of seeds of autorotating plants. Science 3241438-1440 (2009).

  • 2

    Greene, D. F. & Johnson, E. A. Aerodynamics of feathered seeds. Funct. School. 4117-125 (1990).

  • 3

    Ridley, H. N. On the dispersion of seeds by the wind. Ann. Bot. os-19351-364 (1905).

  • 4

    Small, J. The origin and development of Compositæ. New Phytol. 17, 200-230 (1918).

  • 5

    Holm, L. G. Weeds of the world: natural stories and distribution (John Wiley & Sons, New York, 1997).

  • 6

    Tackenberg, O., Poschlod, P. and Kahmen, S. Dandelion Seed Dispersion: Horizontal wind speed does not matter for long-distance dispersal – it's a current ascending! Biol plant. 5451-454 (2003).

  • 7.

    Sheldon, J. & Burrows, F. Dispersion efficiency of achene-pappus units of selected compounds in constant convective winds. New Phytol. 72665-675 (1973).

  • 8

    Nathan, R. et al. Mechanisms of seed dispersal over long distances. Trends Ecol. Evol. 23638 to 647 (2008).

  • 9

    Soons, M. B. & Ozinga, W. A. ​​What is the importance of seed dispersal over long distances for the regional survival of plant species? Various Distributes. 11165-172 (2005).

  • ten.

    Greene, D. F. The role of abscission in dispersing seeds over long distances by the wind. Ecology 86, 3105-3110 (2005).

  • 11

    Andersen, M. C. Variability analysis of sedimentation velocities of several Asteraceae dispersed by wind. A m. J. Bot. 791087-1091 (1992).

  • 12

    Burrows, F. Calculation of primary trajectories of feathered seeds by constant wind with variable convection. New Phytol. 72647-664 (1973).

  • 13

    Andersen, M. C. Morphology and seed dispersal in several Asteraceae dispersed by wind. A m. J. Bot. 80487-492 (1993).

  • 14

    Minami, S. & Azuma, A. Different modes of flight of seeds dispersed by the wind. J. Theor. Biol. 225, 1-14 (2003).

  • 15

    Sudo, S., N. Matsui, K. Tsuyuki and T., T. Morphological conception of dandelion. In Proc. 11th International Congress and Exhibition (Society for Experimental Mechanics, 2008).

  • 16

    Tackenberg, O., Poschlod, P. and Bonn, S. Evaluation of wind dispersal potential in plant species. School. Monogram. 73191-205 (2003).

  • 17

    Stevenson, R., Evangelista, D. and Looy, C. V. When conifers took off: biomechanical assessment of an imperfect evolutionary takeoff. Paleobiology 41, 205-225 (2015).

  • 18

    Delery, J. Three-dimensional topology of separate flows: singular points, beam splitters and vortex structures (John Wiley & Sons, 2013).

  • 19

    Vogel, S. Life in fluids in motion: the physical biology of flow (Princeton Univ Press, Princeton, 1981).

  • 20

    Barta, E. & Weihs, D. A creeping flow around a finite row of thin bodies nearby. J. Fluid Mech. 551, 1-17 (2006).

  • 21

    Casseau, V., De Croon, G., Izzo, D. and Pandolfi, C. Morphological and aerodynamic considerations for feathered Tragopogon pratensis and their implications for seed dispersal. PLoS ONE ten, e0125040 (2015).

  • 22

    Roos, W. W. & Willmarth, W. W. Some experimental results on the drag of the sphere and disk. AIAA J. 9285-291 (1971).

  • 23

    Shenoy, A. & Kleinstreuer, C. Flow on a thin circular disk with low to moderate Reynolds numbers. J. Fluid Mech. 605, 253-262 (2008).

  • 24

    Fernandes, P.C., Risso, F., Ern, P. & Magnaudet, J. Unstable motion and wake instability of free-climbing axisymmetric bodies. J. Fluid Mech. 573479-502 (2007).

  • 25

    Cummins, C., Viola, I.M., Mastropaolo, E. & Nakayama, N. The effect of permeability on flow beyond permeable disks with low Reynolds number. Phys. Fluid 29, 097103 (2017).

  • 26

    Vincent, L., Shambaugh, W. S. & Kanso, E. Holes stabilize free-falling pieces. J. Fluid Mech. 801250-259 (2016).

  • 27

    Davidi, G. & Weihs, D. Flow around a comb wing in a low Reynolds number flow. AIAA J. 50, 249-253 (2012).

  • 28

    Jones, S.K., Yun, Y.J.J., Hedrick, T.L., Griffith, B.E. and Miller, L.A.The bristles reduce the force required to "spread" the wings between the smaller insects. J. Exp. Biol. 2193759 to 3772 (2016).

  • 29

    Lee, S.H. & Kim, D. Aerodynamics of a translucent plate shaped comb inspired by a fairy wing. Phys. Fluid 29081902 (2017).

  • 30

    Santhanakrishnan, A. et al. Clap and fling mechanism with porous wings interacting in tiny insect flight. J. Exp. Biol. 217, 3898-3909 (2014).

  • 31.

    Cheer, A. & Koehl, M. Paddles and rakes: Fluid flow through hair appendages of small organisms. J. Theor. Biol. 12917-39 (1987).

  • 32

    Ross, D.H. & Craig, D.A. Mechanisms for fine particle capture by larval black fly (Diptera: Simuliidae). Can. J. Zool. 581186-1192 (1980).

  • 33

    van Duren, L.A. & Videler, J. J. Escaping the viscosity: kinematics and hydrodynamics of the search for copepods and escape swimming. J. Exp. Biol. 206269-279 (2003).

  • 34

    Seale, M., C. Cummins, Viola I., Mastropaolo, E. and Nakayama, N. Principles of design of hair-like structures as biological machines. J. R. Soc. Interface 1520180206 (2018).

  • 35

    Cummins, C., Nakayama, N., Viola, I.M. & Mastropaolo, E. MATLAB, scripts for the analysis of vortex excretion. https://doi.org/10.7488/ds/2362 (2018).

  • 36

    Viola, I.M., Nakayama, N., Mastropaolo, E. & Cummins, C. Vortex excreting as a result of a 75% porosity disc. https://doi.org/10.7488/ds/2363 (2018).

  • 37

    Dierick, M., Masschaele, B. and Hoorebeke, L. V. Octopus, a fast and user-friendly tomographic reconstruction software developed in LabView.®. Meas. Sci. Technol. 151366-1370 (2004).

  • 38

    R Core Team. R: A language and an environment for statistical computing http://www.r-project.org/ (R Foundation for Statistical Informatics, Vienna, Austria, 2013).

  • 39

    Sato, M., Bitter, I., Bender, A., Kaufman, A. E. and Nakajima, M. TEASAR: tree structure extraction algorithm for accurate and robust skeletons. In Proc. 8th Pacific Conference on Computer Graphics and Its Applications (Barsky eds., B.A. et al.) 281-449 (IEEE, 2000).

  • 40

    Schneider, C.A., Rasband, W.S. & Eliceiri, K.W.H.NIH Image to ImageJ: 25 years of image analysis. Nat. The methods 9671-675 (2012).

  • 41

    Forster, B., D. Van De Ville, J. Berent, D. Sage and D. Unser, M. Complex wavelets for extended depth of field: new method of fusion of multi-channel microscopy images. Microsc. Res. Technology. 65, 33-42 (2004).

  • 42

    Preibisch, S., Saalfeld, S. & Tomancak, P. Optimal assembly at the global level of mosaic 3D microscopic image acquisitions. bioinformatics 251463-1465 (2009).

  • 43

    White, C. M. The drag of cylinders in fluids at low speed. Proc. R. Soc. A 186472-479 (1946).

  • 44

    Chwang, A.T. & Wu, T.Y.-T. Hydromechanical flow with low Reynolds number. Part 2. Singularity method for Stokes flows. J. Fluid Mech. 67787-815 (1975).

  • 45

    Viola, I. M., Bot, P. & Riotte, M. On the uncertainty of CFD in aerodynamic sails. Int. J. Numer. Fluid methods 721146-1164 (2013).

  • [ad_2]
    Source link