[ad_1]
Lentink, D., Dickson, W.B., van Leeuwen, J.L. and Dickinson, M.H. Prominent vortices increase the lift of seeds of autorotating plants. Science 3241438-1440 (2009).
Greene, D. F. & Johnson, E. A. Aerodynamics of feathered seeds. Funct. School. 4117-125 (1990).
Ridley, H. N. On the dispersion of seeds by the wind. Ann. Bot. os-19351-364 (1905).
Small, J. The origin and development of Compositæ. New Phytol. 17, 200-230 (1918).
Holm, L. G. Weeds of the world: natural stories and distribution (John Wiley & Sons, New York, 1997).
Tackenberg, O., Poschlod, P. and Kahmen, S. Dandelion Seed Dispersion: Horizontal wind speed does not matter for long-distance dispersal – it's a current ascending! Biol plant. 5451-454 (2003).
Sheldon, J. & Burrows, F. Dispersion efficiency of achene-pappus units of selected compounds in constant convective winds. New Phytol. 72665-675 (1973).
Nathan, R. et al. Mechanisms of seed dispersal over long distances. Trends Ecol. Evol. 23638 to 647 (2008).
Soons, M. B. & Ozinga, W. A. What is the importance of seed dispersal over long distances for the regional survival of plant species? Various Distributes. 11165-172 (2005).
Greene, D. F. The role of abscission in dispersing seeds over long distances by the wind. Ecology 86, 3105-3110 (2005).
Andersen, M. C. Variability analysis of sedimentation velocities of several Asteraceae dispersed by wind. A m. J. Bot. 791087-1091 (1992).
Burrows, F. Calculation of primary trajectories of feathered seeds by constant wind with variable convection. New Phytol. 72647-664 (1973).
Andersen, M. C. Morphology and seed dispersal in several Asteraceae dispersed by wind. A m. J. Bot. 80487-492 (1993).
Minami, S. & Azuma, A. Different modes of flight of seeds dispersed by the wind. J. Theor. Biol. 225, 1-14 (2003).
Sudo, S., N. Matsui, K. Tsuyuki and T., T. Morphological conception of dandelion. In Proc. 11th International Congress and Exhibition (Society for Experimental Mechanics, 2008).
Tackenberg, O., Poschlod, P. and Bonn, S. Evaluation of wind dispersal potential in plant species. School. Monogram. 73191-205 (2003).
Stevenson, R., Evangelista, D. and Looy, C. V. When conifers took off: biomechanical assessment of an imperfect evolutionary takeoff. Paleobiology 41, 205-225 (2015).
Delery, J. Three-dimensional topology of separate flows: singular points, beam splitters and vortex structures (John Wiley & Sons, 2013).
Vogel, S. Life in fluids in motion: the physical biology of flow (Princeton Univ Press, Princeton, 1981).
Barta, E. & Weihs, D. A creeping flow around a finite row of thin bodies nearby. J. Fluid Mech. 551, 1-17 (2006).
Casseau, V., De Croon, G., Izzo, D. and Pandolfi, C. Morphological and aerodynamic considerations for feathered Tragopogon pratensis and their implications for seed dispersal. PLoS ONE ten, e0125040 (2015).
Roos, W. W. & Willmarth, W. W. Some experimental results on the drag of the sphere and disk. AIAA J. 9285-291 (1971).
Shenoy, A. & Kleinstreuer, C. Flow on a thin circular disk with low to moderate Reynolds numbers. J. Fluid Mech. 605, 253-262 (2008).
Fernandes, P.C., Risso, F., Ern, P. & Magnaudet, J. Unstable motion and wake instability of free-climbing axisymmetric bodies. J. Fluid Mech. 573479-502 (2007).
Cummins, C., Viola, I.M., Mastropaolo, E. & Nakayama, N. The effect of permeability on flow beyond permeable disks with low Reynolds number. Phys. Fluid 29, 097103 (2017).
Vincent, L., Shambaugh, W. S. & Kanso, E. Holes stabilize free-falling pieces. J. Fluid Mech. 801250-259 (2016).
Davidi, G. & Weihs, D. Flow around a comb wing in a low Reynolds number flow. AIAA J. 50, 249-253 (2012).
Jones, S.K., Yun, Y.J.J., Hedrick, T.L., Griffith, B.E. and Miller, L.A.The bristles reduce the force required to "spread" the wings between the smaller insects. J. Exp. Biol. 2193759 to 3772 (2016).
Lee, S.H. & Kim, D. Aerodynamics of a translucent plate shaped comb inspired by a fairy wing. Phys. Fluid 29081902 (2017).
Santhanakrishnan, A. et al. Clap and fling mechanism with porous wings interacting in tiny insect flight. J. Exp. Biol. 217, 3898-3909 (2014).
Cheer, A. & Koehl, M. Paddles and rakes: Fluid flow through hair appendages of small organisms. J. Theor. Biol. 12917-39 (1987).
Ross, D.H. & Craig, D.A. Mechanisms for fine particle capture by larval black fly (Diptera: Simuliidae). Can. J. Zool. 581186-1192 (1980).
van Duren, L.A. & Videler, J. J. Escaping the viscosity: kinematics and hydrodynamics of the search for copepods and escape swimming. J. Exp. Biol. 206269-279 (2003).
Seale, M., C. Cummins, Viola I., Mastropaolo, E. and Nakayama, N. Principles of design of hair-like structures as biological machines. J. R. Soc. Interface 1520180206 (2018).
Cummins, C., Nakayama, N., Viola, I.M. & Mastropaolo, E. MATLAB, scripts for the analysis of vortex excretion. https://doi.org/10.7488/ds/2362 (2018).
Viola, I.M., Nakayama, N., Mastropaolo, E. & Cummins, C. Vortex excreting as a result of a 75% porosity disc. https://doi.org/10.7488/ds/2363 (2018).
Dierick, M., Masschaele, B. and Hoorebeke, L. V. Octopus, a fast and user-friendly tomographic reconstruction software developed in LabView.®. Meas. Sci. Technol. 151366-1370 (2004).
R Core Team. R: A language and an environment for statistical computing http://www.r-project.org/ (R Foundation for Statistical Informatics, Vienna, Austria, 2013).
Sato, M., Bitter, I., Bender, A., Kaufman, A. E. and Nakajima, M. TEASAR: tree structure extraction algorithm for accurate and robust skeletons. In Proc. 8th Pacific Conference on Computer Graphics and Its Applications (Barsky eds., B.A. et al.) 281-449 (IEEE, 2000).
Schneider, C.A., Rasband, W.S. & Eliceiri, K.W.H.NIH Image to ImageJ: 25 years of image analysis. Nat. The methods 9671-675 (2012).
Forster, B., D. Van De Ville, J. Berent, D. Sage and D. Unser, M. Complex wavelets for extended depth of field: new method of fusion of multi-channel microscopy images. Microsc. Res. Technology. 65, 33-42 (2004).
Preibisch, S., Saalfeld, S. & Tomancak, P. Optimal assembly at the global level of mosaic 3D microscopic image acquisitions. bioinformatics 251463-1465 (2009).
White, C. M. The drag of cylinders in fluids at low speed. Proc. R. Soc. A 186472-479 (1946).
Chwang, A.T. & Wu, T.Y.-T. Hydromechanical flow with low Reynolds number. Part 2. Singularity method for Stokes flows. J. Fluid Mech. 67787-815 (1975).
Viola, I. M., Bot, P. & Riotte, M. On the uncertainty of CFD in aerodynamic sails. Int. J. Numer. Fluid methods 721146-1164 (2013).
Source link