Built-in frequency comb with batteries



[ad_1]

  • 1.

    Newbury, N. R. Research applications with a fine tooth comb. Nat. Photon. 5, 186-188 (2011).

  • 2

    Del'Haye, P. et al. Generation of optical frequency comb from a monolithic microresonator. Nature 450, 1214-1217 (2007).

  • 3

    Pasquazi, A. et al. Micro-combs: a new generation of optical sources. Phys. Representative. 729, 1-81 (2018).

  • 4

    Jung, H., Xiong, C., Fong, K. Y., Zhang, X. and Tang, H. X. Generation of optical frequency comb from an aluminum nitride microride resonator. Opt. Lett. 38, 2810-2813 (2013).

  • 5

    Savchenkov, A.A. et al. Tunable optical frequency comb with crystal tunnel mode resonator. Phys. Rev. Lett. 101, 093902 (2008).

  • 6

    Levy, J. S. et al. CMOS-compatible multi-wavelength oscillator for on-chip optical interconnects. Nat. Photon. 4, 37-40 (2010).

  • 7.

    Razzari, L. et al. Integrated hyper-parametric optical oscilloscope integrated CMOS compatible. Nat. Photon. 441-45 (2010).

  • 8

    Herr, T. et al. Temporal solitons in optical microresons. Nat. Photon. 8145-152 (2014).

  • 9

    Saha, K. et al. Modelocking and generation of femtosecond pulses in smart frequency combs. Opt. Express 211335-1343 (2013).

  • ten.

    Yi, X., Yang, Q.-F., Yang, K. Y., Suh, M.-G. & Vahala, K. K. Soliton frequency comb at microwave speeds in a silica high silica microresonator. Optica 2, 1078-1085 (2015).

  • 11

    Yu, M., Okawachi, Y. Griffith, A.G., Lipson, M. and Gaeta, A. L. Medium-infrared combs in locked mode in a silicon microresonator. Optica 3854-860 (2016).

  • 12

    Xue, X. et al. Black impulse Kerr combs locked in normal dispersion microreson mode. Nat. Photon. 9594-600 (2015).

  • 13

    Strand, N. et al. Soliton of micro-resonator generated directly with a laser diode. Photonic Laser Rev. 121700307 (2018).

  • 14

    Suh, M.-G., Yang, Q.-F., Yang, K. Y., Y., X. & Vahala, K. J. Spectroscopy with two micron-resonator soliton combs. Science 354, 600-603 (2016).

  • 15

    Dutt, A. et al. Double comb on chip for spectroscopy. Sci. Adv. 4e1701858 (2018).

  • 16

    Yu, M. et al. Double comb spectroscopy in the middle infrared based on a silicon chip. Nat. Common. 91869 (2018).

  • 17

    Liang, W. et al. High Frequency Radio Frequency Radiofrequency Oscillator with Kerr Frequency Comb. Nat. Common. 67957 (2015).

  • 18

    Spencer, D. T. et al. An optical frequency synthesizer using integrated photonics. Nature 55781-85 (2018).

  • 19

    Papp, S.B. et al. Microresonator frequency comb optical clock. Optica 1, 10-14 (2014).

  • 20

    Suh, M.-G. & Vahala, K. J. Soliton, measuring the range of microcombs. Science 359884-887 (2018).

  • 21

    Trocha, P. et al. Ultrafast optical range using soliton frequency combs of microresonators. Science 359887-891 (2018).

  • 22

    Marin-Palomo, P. et al. Solitons based on microresonators for coherently coherent optical communications in parallel. Nature 546274-279 (2017).

  • 23

    Fang, A. W. et al. AlGaInAs-silicon hybrid evanescent laser with electric pumping. Opt. Express 149203-9210 (2006).

  • 24

    Van Campenhout, J. et al. Electrically pumped InP microdisk lasers integrated with a silicon-on-insulator nanophotonic waveguide circuit. Opt. Express 156744-6749 (2007).

  • 25

    Kobayashi, N. et al. Tunable lasers with wavelength of hybrid silicon photonic annular filter. J. Lightwave Technol. 33, 1241-1246 (2015).

  • 26

    Lee, J.-H. et al. Demonstration of 12.2% wall socket efficiency in an Si / III-V tunable hybrid laser with external cavity and uncooled single mode. Opt. Express 23, 12079 to 12088 (2015).

  • 27

    Ji, X. et al. Very low loss chip resonators with parametric oscillation threshold less than milliwatt. Optica 4619-624 (2017).

  • 28

    Stern, B., Ji, X., Dutt, A. and Lipson, M. Compact and narrow line width integrated laser based on a low loss silicon nitride ring resonator. Opt. Lett. 424541-4544 (2017).

  • 29

    Oldenbeuving, R.M. et al. 25 kHz narrow spectral bandwidth of a diode laser with adjustable wavelength with an external cavity with short waveguide. Laser Phys. Lett. ten015804 (2013).

  • 30

    Liang, W. et al. Ultra-narrow line outer cavity semiconductor laser based on Whispering gallery mode resonators. Opt. Lett. 35, 2822-2824 (2010).

  • 31.

    Pasquazi, A. et al. Optical self-locking parametric oscillation in a CMOS-compatible microarray resonator: a path to generation of robust optical frequency combs on a chip. Opt. Express 2113333-13341 (2013).

  • 32

    Johnson, A. R. et al. Comb generation based on a microresonator without an external laser source. Opt. Express 221394-1401 (2014).

  • 33

    Joshi, C. et al. Generation of thermally controlled comb and fixation of soliton model in microresonators. Opt. Lett. 412565-2568 (2016).

  • 34

    Bao, C. et al. Nonlinear conversion efficiency in the generation of Kerr frequency combs. Opt. Lett. 396126 to 6129 (2014).

  • 35

    Yi, X., Yang, Q.-F., Yang, K. Y. & Vahala, K. Active capture and stabilization of temporal solitons in microresonators. Opt. Lett. 412037-2040 (2016).

  • 36

    Cong, G.W. et al. Energy-efficient gray-scale control of silicon thermo-optical phase shifters by pulse width modulation using monolithically integrated MOSFETs Conference on Fiber Optic Communication (2015) M2B.7 (Optical Society of America, 2015).

  • 37

    Peccianti, M. et al. Demonstration of a stable high-speed laser based on a non-linear microcavity. Nat. Common. 3765 (2012).

  • 38

    Hausmann, B.J. M., Bulu, I., Venkataraman, V., Deotare, P. & Lončar, M. Diamond in nonlinear photonics. Nat. Photon. 8, 369-374 (2014).

  • 39

    Webb, K. E., M. Erkintalo, S. Coen and S. Murdoch. Opt. Lett. 414613-4616 (2016).

  • [ad_2]
    Source link