Sensation, movement and learning in the absence of barrel cortex



[ad_1]

  • 1.

    Glickfeld, L.L., Histed, M.H. & Maunsell, J.H.R. Mouse, the primary visual cortex is used to detect changes in orientation and contrast. J. Neurosci. 3319416-19422 (2013).

  • 2.

    Petruno, S.K., Clark, R.E. and Reinagel, P. Proof that primary visual cortex is necessary for image, orientation and movement discrimination in rats. PLoS ONE 8, e56543 (2013).

  • 3.

    Lashley, K. S. The mechanism of vision IV. The brain areas necessary for the vision of the model in the rat. J. Comp. Neurol. 53419-478 (1931).

  • 4.

    Kato, H.K., Gillet, S.N., and Isaacson, J.S. Flexible sensory representations in the auditory cortex driven by behavioral relevance. neuron 88, 1027-1039 (2015).

  • 5.

    Kelly, J. B. & Glazier, S. J. Auditory cortex lesions and spatial location discrimination in the rat. Brain Res. 145315-321 (1978).

  • 6.

    Talwar, S.K., Musial, P.G. and Gerstein, G.L. Role of the auditory cortex in mammals in the perception of elementary sound properties. J. Neurophysiol. 85, 2350-2358 (2001).

  • 7.

    Oliveira-Maia, A. J. et al. The insular cortex controls food preferences independently of taste receptor signaling. Front. Syst. Neurosci. 65 (2012).

  • 8.

    Peng, Y. et al. Sweet and bitter taste in the brain of awake animals. Nature 527, 512-515 (2015).

  • 9.

    Waiblinger, C., Brugger, D. and Schwarz, C. Vibration discrimination in the rat whisker system is based on the neural coding of kinematic instantaneous signals. Cereb. Cortex 25, 1093-1106 (2015).

  • ten.

    Hutson, K. A. and Masterton, R. B. The sensory contribution of a cortical barrel to a single vibrium. J. Neurophysiol. 56, 1196-1223 (1986).

  • 11.

    Morita, T., H. Kang, J. Wolfe, Jadhav, S.P. and Feldman, D. E. Psychometric curves and behavioral strategies for whisker texture discrimination in rats. PLoS ONE 6, e20437 (2011).

  • 12.

    Guo, Z.V. et al. Flow of cortical activity underlying a tactile decision in mice. neuron 81, 179-194 (2014).

  • 13.

    O'Connor, D.H., Peron, S. P., Huber, D. & Svoboda, K. Neuronal activity in the barrel cortex underlying the localization of vibrissa-based objects in mice. neuron 671048-1061 (2010).

  • 14.

    Kwon, S.E., Yang, H., Minamisawa, G., and O'Connor, D.H. Sensory and decisional activities propagate in a cortical feedback loop during the perception of touch. Nat. Neurosci. 19, 1243-1249 (2016).

  • 15.

    Miyashita, T. and Feldman, D. The behavioral detection of passive whisker stimuli requires a somatosensory cortex. Cereb. Cortex 231655-1662 (2013).

  • 16.

    Sachidhanandam, S., Sreenivasan, V., Kyriakatos, A., Kremer, Y. & Petersen, C. C. Potential membrane correlates of sensory perception in the barrel cortex of mice. Nat. Neurosci. 16, 1671-1677 (2013).

  • 17.

    Stüttgen, C. & Schwarz, C. Barrel Cortex: What's the point? Neuroscience 368, 3-16 (2018).

  • 18.

    Otchy, T. M. et al. Acute off-target effects of neural circuit manipulations. Nature 528, 358-363 (2015).

  • 19.

    Deutsch, D., Pietr, M., Knutsen, P., Ahissar, E. & Schneidman, E. Rapid Feedback on Active Detection: Touch-induced Changes in Mustache-Object Interaction . PLoS ONE 7, e44272 (2012).

  • 20.

    Grant, R. A., Mitchinson, B., Fox, C.W. & Prescott, T. J. Active rat sensing: Preventive and regulatory control of whisker movements during surface exploration. J. Neurophysiol. 101, 862-874 (2009).

  • 21.

    Mitchinson, B. et al. Active vibrissal detection in rodents and marsupials. Phil. Trans. R. Soc. Lond. B 366, 3037-3048 (2011).

  • 22.

    Matyas, F. et al. Motor control by sensory cortex. Science 330, 1240-1243 (2010).

  • 23.

    Harvey, M.A., Sachdev, R.N. & Zeigler, H.P. Cortical field ablation of casks and threshing kinematics unconditioned. Somatosens. Word. Res. 18223-227 (2001).

  • 24.

    Pammer, L. et al. The mechanical variables underlying the location of objects along the axis of the mustache. J. Neurosci. 33, 6726-6741 (2013).

  • 25.

    Stüttgen, M.C & Schwarz, C. Performances of psychophysical and neurometric detection under stimulus uncertainty. Nat. Neurosci. 111091-1099 (2008).

  • 26.

    Keck, T. et al. Synaptic scaling and homeostatic plasticity in the visual cortex of the mouse in vivo. neuron 80, 327-334 (2013).

  • 27.

    Kawai, R. et al. The motor cortex is necessary to learn but not to execute a motor skill. neuron 86, 800-812 (2015).

  • 28.

    Brecht, M. The Body Model Theory of the Somatosensory Cortex. neuron 94, 985-992 (2017).

  • 29.

    Stüttgen, M.C., Schwarz, C. & Jäkel, F. Map of peaks to sensations. Front. Neurosci. 5125 (2011).

  • 30.

    Cohen, J. D. and Castro-Alamancos, M. A. The detection of low-saliency mustache stimuli requires a synergy of tectal and thalamic sensory relays. J. Neurosci. 30, 2245-2256 (2010).

  • 31.

    Huerta, M.F., Frankfurter, A. and Harting, J.K. Studies of the major sensory and spinal trigeminal nuclei of the rat: projections to the superior colliculus, inferior olive and cerebellum. J. Comp. Neurol. 220147-167 (1983).

  • 32.

    Smith, J.B., Mowery, T.M. & Alloway, K.D. Projections of Thalamic POm to the Dorsolateral Striatum of Rats: Potential Mediating Pathway of Stimulus-Response Associations for Sensorimotor Habits. J. Neurophysiol. 108, 160-174 (2012).

  • 33.

    Gorski, J.A. et al. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing line. J. Neurosci. 22, 6309-6314 (2002).

  • 34.

    Scholl, B., Pattadkal, J.J., Dilly, G.A., Priebe, N.J. & Zemelman, B. V. Local integration accounts for the low selectivity of mouse neocortical parvalbumin interneurons. neuron 87, 424-436 (2015).

  • 35.

    O'Connor, D.H. et al. Location of vibrin-based objects in fixed-headed mice. J. Neurosci. 30, 1947-1967 (2010).

  • 36.

    Clack, N. G. et al. Automated tracking of whiskers in fixed rodent videos. PLoS Comput. Biol. 8, e1002591 (2012).

  • 37.

    Hill, D.N., Curtis, J.C., Moore, J.D. and Kleinfeld, D. The primary motor cortex reports efferent control of vibrissa movement over several time scales. neuron 72, 344-356 (2011).

  • 38.

    Kleinfeld, D. & Deschênes, M. Neuronal basis for locating objects in the Vibissa scanning sensorimotor system. neuron 72, 455-468 (2011).

  • 39.

    Bruno, R. M. & Simons, D. J. Mechanisms of feedforward of receptive cortical fields excitatory and inhibitory. J. Neurosci. 2210966-10975 (2002).

  • 40.

    Pachitariu, M., Steinmetz, N., Kadir, S., Carandini, M. and Harris, K. D. Kilosort: Real-time sorting for extracellular electrophysiology with hundreds of channels. Pre-print at https://www.biorxiv.org/content/early/2016/06/30/061481 (2016).

  • 41.

    Rossant, C. et al. Sort by picks for large dense electrode arrays. Nat. Neurosci. 19, 634-641 (2016).

  • 42.

    Paxinos, G. and Franklin, K.B. J. The brain of the mouse in stereotaxic coordinates. 2nd ed. (Academic, New York, 2001).

  • [ad_2]
    Source link