[ad_1]
Glickfeld, L.L., Histed, M.H. & Maunsell, J.H.R. Mouse, the primary visual cortex is used to detect changes in orientation and contrast. J. Neurosci. 3319416-19422 (2013).
Petruno, S.K., Clark, R.E. and Reinagel, P. Proof that primary visual cortex is necessary for image, orientation and movement discrimination in rats. PLoS ONE 8, e56543 (2013).
Lashley, K. S. The mechanism of vision IV. The brain areas necessary for the vision of the model in the rat. J. Comp. Neurol. 53419-478 (1931).
Kato, H.K., Gillet, S.N., and Isaacson, J.S. Flexible sensory representations in the auditory cortex driven by behavioral relevance. neuron 88, 1027-1039 (2015).
Kelly, J. B. & Glazier, S. J. Auditory cortex lesions and spatial location discrimination in the rat. Brain Res. 145315-321 (1978).
Talwar, S.K., Musial, P.G. and Gerstein, G.L. Role of the auditory cortex in mammals in the perception of elementary sound properties. J. Neurophysiol. 85, 2350-2358 (2001).
Oliveira-Maia, A. J. et al. The insular cortex controls food preferences independently of taste receptor signaling. Front. Syst. Neurosci. 65 (2012).
Peng, Y. et al. Sweet and bitter taste in the brain of awake animals. Nature 527, 512-515 (2015).
Waiblinger, C., Brugger, D. and Schwarz, C. Vibration discrimination in the rat whisker system is based on the neural coding of kinematic instantaneous signals. Cereb. Cortex 25, 1093-1106 (2015).
Hutson, K. A. and Masterton, R. B. The sensory contribution of a cortical barrel to a single vibrium. J. Neurophysiol. 56, 1196-1223 (1986).
Morita, T., H. Kang, J. Wolfe, Jadhav, S.P. and Feldman, D. E. Psychometric curves and behavioral strategies for whisker texture discrimination in rats. PLoS ONE 6, e20437 (2011).
Guo, Z.V. et al. Flow of cortical activity underlying a tactile decision in mice. neuron 81, 179-194 (2014).
O'Connor, D.H., Peron, S. P., Huber, D. & Svoboda, K. Neuronal activity in the barrel cortex underlying the localization of vibrissa-based objects in mice. neuron 671048-1061 (2010).
Kwon, S.E., Yang, H., Minamisawa, G., and O'Connor, D.H. Sensory and decisional activities propagate in a cortical feedback loop during the perception of touch. Nat. Neurosci. 19, 1243-1249 (2016).
Miyashita, T. and Feldman, D. The behavioral detection of passive whisker stimuli requires a somatosensory cortex. Cereb. Cortex 231655-1662 (2013).
Sachidhanandam, S., Sreenivasan, V., Kyriakatos, A., Kremer, Y. & Petersen, C. C. Potential membrane correlates of sensory perception in the barrel cortex of mice. Nat. Neurosci. 16, 1671-1677 (2013).
Stüttgen, C. & Schwarz, C. Barrel Cortex: What's the point? Neuroscience 368, 3-16 (2018).
Otchy, T. M. et al. Acute off-target effects of neural circuit manipulations. Nature 528, 358-363 (2015).
Deutsch, D., Pietr, M., Knutsen, P., Ahissar, E. & Schneidman, E. Rapid Feedback on Active Detection: Touch-induced Changes in Mustache-Object Interaction . PLoS ONE 7, e44272 (2012).
Grant, R. A., Mitchinson, B., Fox, C.W. & Prescott, T. J. Active rat sensing: Preventive and regulatory control of whisker movements during surface exploration. J. Neurophysiol. 101, 862-874 (2009).
Mitchinson, B. et al. Active vibrissal detection in rodents and marsupials. Phil. Trans. R. Soc. Lond. B 366, 3037-3048 (2011).
Matyas, F. et al. Motor control by sensory cortex. Science 330, 1240-1243 (2010).
Harvey, M.A., Sachdev, R.N. & Zeigler, H.P. Cortical field ablation of casks and threshing kinematics unconditioned. Somatosens. Word. Res. 18223-227 (2001).
Pammer, L. et al. The mechanical variables underlying the location of objects along the axis of the mustache. J. Neurosci. 33, 6726-6741 (2013).
Stüttgen, M.C & Schwarz, C. Performances of psychophysical and neurometric detection under stimulus uncertainty. Nat. Neurosci. 111091-1099 (2008).
Keck, T. et al. Synaptic scaling and homeostatic plasticity in the visual cortex of the mouse in vivo. neuron 80, 327-334 (2013).
Kawai, R. et al. The motor cortex is necessary to learn but not to execute a motor skill. neuron 86, 800-812 (2015).
Brecht, M. The Body Model Theory of the Somatosensory Cortex. neuron 94, 985-992 (2017).
Stüttgen, M.C., Schwarz, C. & Jäkel, F. Map of peaks to sensations. Front. Neurosci. 5125 (2011).
Cohen, J. D. and Castro-Alamancos, M. A. The detection of low-saliency mustache stimuli requires a synergy of tectal and thalamic sensory relays. J. Neurosci. 30, 2245-2256 (2010).
Huerta, M.F., Frankfurter, A. and Harting, J.K. Studies of the major sensory and spinal trigeminal nuclei of the rat: projections to the superior colliculus, inferior olive and cerebellum. J. Comp. Neurol. 220147-167 (1983).
Smith, J.B., Mowery, T.M. & Alloway, K.D. Projections of Thalamic POm to the Dorsolateral Striatum of Rats: Potential Mediating Pathway of Stimulus-Response Associations for Sensorimotor Habits. J. Neurophysiol. 108, 160-174 (2012).
Gorski, J.A. et al. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing line. J. Neurosci. 22, 6309-6314 (2002).
Scholl, B., Pattadkal, J.J., Dilly, G.A., Priebe, N.J. & Zemelman, B. V. Local integration accounts for the low selectivity of mouse neocortical parvalbumin interneurons. neuron 87, 424-436 (2015).
O'Connor, D.H. et al. Location of vibrin-based objects in fixed-headed mice. J. Neurosci. 30, 1947-1967 (2010).
Clack, N. G. et al. Automated tracking of whiskers in fixed rodent videos. PLoS Comput. Biol. 8, e1002591 (2012).
Hill, D.N., Curtis, J.C., Moore, J.D. and Kleinfeld, D. The primary motor cortex reports efferent control of vibrissa movement over several time scales. neuron 72, 344-356 (2011).
Kleinfeld, D. & Deschênes, M. Neuronal basis for locating objects in the Vibissa scanning sensorimotor system. neuron 72, 455-468 (2011).
Bruno, R. M. & Simons, D. J. Mechanisms of feedforward of receptive cortical fields excitatory and inhibitory. J. Neurosci. 2210966-10975 (2002).
Pachitariu, M., Steinmetz, N., Kadir, S., Carandini, M. and Harris, K. D. Kilosort: Real-time sorting for extracellular electrophysiology with hundreds of channels. Pre-print at https://www.biorxiv.org/content/early/2016/06/30/061481 (2016).
Rossant, C. et al. Sort by picks for large dense electrode arrays. Nat. Neurosci. 19, 634-641 (2016).
Paxinos, G. and Franklin, K.B. J. The brain of the mouse in stereotaxic coordinates. 2nd ed. (Academic, New York, 2001).
Source link