[ad_1]
Zhang, L., Vielle, A., Espinosa, S. and Zhao, R. RNAs in the spliceosome: overview of cryoEM structures. Wiley Interdiscip. Rev. RNA tene1523 (2019).
Wan, R., Bai, R., Yan, C., Lei, J. and Shi, Y. Structures of catalytically activated yeast spliceosome reveal the branching mechanism. Cell 177339-351 (2019).
From Conti, L., Baralle, M. & Buratti, E. Exon and intron definition in pre-mRNA splicing. Wiley Interdiscip. Rev. RNA 4, 49-60 (2013).
Berget, S. M. Exon recognition in vertebrate splicing. J. Biol. Chem. 2702411-2414 (1995).
Sharma, S., Kohlstaedt, L.A., Damianov, A., Rio, D.C. & Black, D.L.The polypyrimidine tract binding protein controls the transition from the definition of exon to an intronically defined spliceosome. Nat. Struct. Mol. Biol. 15, 183-191 (2008).
Schneider, M. et al. The exon definition complexes contain tri-snRNP and can be directly converted into precatalytic type B splice complexes. Mol. Cell 38, 223-235 (2010).
Wang, P. L. et al. Circular RNA is expressed through the eukaryotic tree of life. PLoS One 9, e90859 (2014).
Wilusz, J. E. A. A 360 ° view of circular RNAs: from biogenesis to functions. Wiley Interdiscip. Rev. RNA 9e1478 (2018).
Starke, S. et al. Exon circularization requires canonical splicing signals. Cellular Representative. ten103-111 (2015).
Seraphin, B., Kretzner, L. and Rosbash, M. A U1 RNA Interaction: A Pre-mRNA Base Pairing is Required at the Beginning of the Yeast Spliceosome Assembly but Does Not Only Define the Cleavage Site in 5 & # 39; EMBO J. 72533-2538 (1988).
Siliciano, P. G. & Guthrie, C. Selection of 5-splice site in yeast: genetic alterations in base pairing with U1 reveal additional requirements. Genes Dev. 21258-1267 (1988).
Ruby, S.W. & Abelson, J. A first hierarchical role of the small U1 nuclear ribonucleoprotein in spliceosome assembly. Science 2421028-1035 (1988).
Abovich, N. & Rosbash, M. Interlining interactions between crossed introns in the yeast commitment complex are conserved in mammals. Cell 89403-412 (1997).
Plaschka, C., Lin, C., Charenton, C. and Nagai, K. The structure of the prespliceosome provides insight into the assembly and regulation of spliceosomes. Nature 559419-422 (2018).
Bai, R., Wan, R., Yan, C., Lei, J. and Shi, Y. Fully Assembled Structures Saccharomyces cerevisiae spliceosome before activation. Science 3601423-1429 (2018).
Lewis, JD, Izaurralde, E., Jarmolowski, A., McGuigan, C. and Mattaj, IW A nuclear cap bonding complex facilitates the association of snRNP U1 with splice site in 5 & ## 39, of the proximal cap. Genes Dev. ten1683-1698 (1996).
Qiu, ZR, Chico, L., Chang, J., Shuman, S. and Schwer, B. Genetic Interactions of Hypomorphic Mutations in the M7G Capsule Binding Pocket of the Yeast Nuclear Capsule-binding Complex: A Role essential of Cbc2 in meiosis via splicing of MER3 pre-mRNA. RNA 18, 1996-2011 (2012).
Puig, O., Gottschalk, A., Fabrizio, P. and Seraphin, B. The interaction of the snRNP U1 with non-conserved intron sequences affects the splice site selection in 5 #. Genes Dev. 13569-580 (1999).
Lesser, C. F. & Guthrie, C. Mutational Analysis of Pre-mRNA Splicing at Saccharomyces cerevisiae using a new sensitive reporter gene, CUP1. Genetic 133851-863 (1993).
Liu, S. et al. Structure of the post-catalytic P-spliceosomal yeast complex. Science 358, 1278-1283 (2017).
Lu, M. et al. Crystal structure of the three FF domains in tandem of the CA150 transcription elongation regulator. J. Mol. Biol. 393397-408 (2009).
Liu, J., Fan, S., CJ, Greenleaf, AL and Zhou, P. The specific interaction of TCERG1 transcriptional elongation regulator with RNA polymerase II requires simultaneous phosphorylation at Ser2 level, Ser5 and Ser7 in the carboxy-terminal domain repeat. J. Biol. Chem. 28810890-10901 (2013).
Li, X. et al. CryoEM structure Saccharomyces cerevisiae U1 snRNP provides an overview of alternative splicing. Nat. Common. 81035 (2017).
Görnemann, J. et al. The assembly and splicing of cotranscriptional spliceosomes are independent of the WW domain of Prp40p. RNA 172119-2129 (2011).
Ester, C. & Uetz, P. The FF domains of the u1 snRNP protein Prp40 U1 induce interactions with Luc7 and Snu71. BMC Biochem. 929 (2008).
Wiesner, S., G. Stier, M. Sattler and M. Macias, J. Solution structure and ligand recognition of the WW domain pair of Prp40 yeast splicing factor. J. Mol. Biol. 324807 to 822 (2002).
Jacewicz, A., Chico, L., Smith, P., Schwer, B. and Shuman, S. Structural basis for RNA recognition of intron branching by Ms15 yeast and selective effects of interfacial mutations on the cell. splicing of the yeast pre-mRNA. RNA 21, 401-414 (2015).
Kappel, K. & Das, R. Sampling of native-type structures of RNA-protein complexes by folding and docking Rosetta. Structure 27140-151e145 (2019).
Howe, K.J., Kane, C.M. and Ares, M., Jr. The disturbance of transcriptional elongation influences the fidelity of the inclusion of the inner exon in Saccharomyces cerevisiae. RNA 9993-1006 (2003).
Campodonico, E. & Schwer, B. ATP-dependent spliceosome remodeling: intragenic suppressors of mutants of the Saccharomyces cerevisiae Prp22. Genetic 160407-415 (2002).
Liang, D. et al. The production of protein coding genes shifts to circular RNAs when the pre-mRNA processing mechanism is limiting. Mol. Cell. 68940-954e943 (2017).
Ragan, C., Goodall, G.J., Shirokikh, N.E. & Preiss, T. Overview of the biogenesis and potential functions of circular exonic RNA. Sci. Representative. 92048 (2019).
Liang, D. & Wilusz, J. E. Short intronic repetitive sequences facilitate circular RNA production. Genes Dev. 28, 2233-2247 (2014).
Jeck, W. R. et al. Circular RNAs are abundant, conserved and associated with ALU repeats. RNA 19141-157 (2013).
Mokry, M. et al. Accurate detection of SNPs and mutations by targeted genomic enrichment, based on a DNA chip, of short fragment sequencing libraries. Nucleic Acids Res. 38, e116 (2010).
Spingola, M., L. Grate, D. Haussler, and M. Ares, M., Jr. Bioinformatics and molecular-scale genome-wide analysis of introns in Saccharomyces cerevisiae. RNA 5221-234 (1999).
Li, X. et al. Comprehensive in vivo analyzes of RNA binding sites reveal the role of Prp8 in the splice assembly. Nucleic Acids Res. 413805-3818 (2013).
Abelson, J. et al. Conformational dynamics of single molecules of pre-mRNA during in vitro splicing. Nat. Struct. Mol. Biol. 17504-512 (2010).
Carragher, B. et al. Leginon: an automated system for acquiring images from vitreous ice samples. J. Struct. Biol. 132, 33-45 (2000).
Zheng, S.Q., Palovcak, E., Armache, J.-P., Cheng, Y. and Agard, D.A. MotionCor2: anisotropic correction of beam-induced motion to improve cryoelectronic microscopy. Nat. The methods
14, 331 to 332 (2017).
Rohou, A. & Grigorieff, N. CTFFIND4: Rapid and accurate estimation of defocusing with the aid of electronic micrographs. J. Struct. Biol. 192216-221 (2015).
Scheres, S.H. and Chen, S. Prevention of overadjustment in the determination of cryo-EM structure. Nat. The methods 9853-854 (2012).
Chen, S. et al. High-resolution noise substitution to measure over-adjustment and validate resolution in 3D single-particle electron cryomicroscopy structure determination. ultramicroscopy 135, 24-35 (2013).
Rosenthal, P. B. & Henderson, R. Optimum determination of particle orientation, absolute hand loss and contrast in single-particle electron cryomicroscopy. J. Mol. Biol. 333721-745 (2003).
Kucukelbir, A., Sigworth, F.J. and Tagare, H.D. Quantify the local resolution of cryo-EM density maps. Nat. The methods 11, 63-65 (2014).
Pettersen, E.F. et al. UCSF Chimera – a visualization system for exploratory research and analysis. J. Comput. Chem. 251605-1612 (2004).
Emsley, P., Lohkamp, B., Scott, W. G. and Cowtan, K. Characteristics and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486-501 (2010).
Keating, K. S. & Pyle, A. M. RCrane: Construction of Semi-Automated RNA Models. Acta Crystallogr. D Biol. Crystallogr. 68, 985-995 (2012).
Cabbage, F.C., Sripakdeevong, P., Dibrov, S.M., Hermann, T. & Das, R. Correction of ubiquitous errors in RNA crystallography by the prediction of enumerative structures. Nat. The methods ten, 74-76 (2013).
Kappel, K. et al. De novo modeling of computer RNA in cryo-EM maps of large ribonucleoprotein complexes. Nat. The methods 15947-954 (2018).
Adams, P.D. et al. PHENIX: a complete system based on Python for a solution with a macromolecular structure. Acta Crystallogr. D Biol. Crystallogr. 66213-221 (2010).
Chen, V.B. et al. MolProbity: validation of the structure any atom for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12-21 (2010).
Goddard, T. D. et al. UCSF ChimeraX: Meeting Modern Challenges in Visualization and Analysis. Protein Sci. 27, 14-25 (2018).
Wiśniewski, J.R., Zougman, A., Nagaraj, N. and Mann, M. Universal sample preparation method for the analysis of the proteome. Nat. The methods 6359-362 (2009).
Grimm, M., Zimniak, T., Kahraman, A. & Herzog, F. xVis: a web server for schematic visualization and interpretation of spatial constraints derived from crosslinks. Nucleic Acids Res. 43, W362 to W369 (2015).
Seraphin, B. & Rosbash, M. Identification of U1 functional snRNA-pre-mRNA complexes involved in spliceosome assembly and splicing. Cell 59349-358 (1989).
Qin, D., Huang, L., Wlodaver, A., Andrade, J. and Staley, J. P. Sequencing of termini lariat in S. cerevisiae reveals 5 'splice sites, branching points and new splicing events. RNA 22, 237-253 (2016).
Li, Z. & Brow, D. A. A rapid test for the quantitative detection of specific RNA. Nucleic Acids Res. 214645-4646 (1993).
Kozlowski, L. P. & Bujnicki, J. MetaDisorder M.: a meta-server for the prediction of intrinsic protein disorder. BMC Bioinformatics 13111 (2012).
[ad_2]
Source link