DDX3X acts as a living control point or dies in stressed cells by regulating the NLRP3 inflammasome



[ad_1]

  • 1.

    Protter, D.S.W. & Parker, R. Principles and properties of stress granules. Trends Cell Biol. 26, 668-679 (2016).

  • 2

    Wolozin, B. Regulated aggregation of proteins: stress granules and neurodegeneration. Mol. Neurodégénére. 756 (2012).

  • 3

    White, J. P. & Lloyd, R. E. Regulation of stress granules in viral systems. Microbiol Trends. 20, 175-183 (2012).

  • 4

    Anderson, P. & Kedersha, N. RNA Granules: Post-transcriptional and Epigenetic Modulators of Gene Expression. Nat. Rev. Mol. Biol cell. ten, 430-436 (2009).

  • 5

    Anderson, P., Kedersha, N. and Ivanov, P. Stress granules, P-body and cancer. Biochim. Biophys. Acta 1849, 861-870 (2015).

  • 6

    Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering the activation of inflammatory caspases and the treatment of proIL-β. Mol. Cell ten417-426 (2002).

  • seven.

    Kanneganti, T.-D. et al. Bacterial RNA and small antiviral compounds activate caspase-1 via cryopyrin / Nalp3. Nature 440233-236 (2006).

  • 8

    Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228-232 (2006).

  • 9

    Karki, R. and Kanneganti, T.-D. The divergent inflammasome signals in tumorigenesis and potential targeting. Nat. Rev. Cancer 19197-214 (2019).

  • ten.

    Malireddi, R.K.S. et al. TAK1 limits the spontaneous activation of NLRP3 and cell death to control myeloid proliferation. J. Exp. Med. 2151023-1034 (2018).

  • 11

    Man, S.M. & Kanneganti, T.-D. Converging roles of caspases in the activation of inflammasome, cell death and innate immunity. Nat. Rev. Immunol. 167-21 (2016).

  • 12

    Venegas, C. et al. ASC particles derived from microglia mingle with amyloid-β pores in Alzheimer's disease. Nature 552355-361 (2017).

  • 13

    Muñoz-Planillo, R. et al. K+ efflux is the common trigger of the activation of the NLRP3 inflammasome by bacterial toxins and particles. Immunity 381142-1153 (2013).

  • 14

    Kanneganti, T.-D. & Lamkanfi, Mr. K+ drops tilt NLRP3 inflammasome. Immunity 381085-1088 (2013).

  • 15

    Groß, C.J. et al. K+ Activation of NLRP3 inflammation independent of efflux by small molecules targeting mitochondria. Immunity 45761-773 (2016).

  • 16

    Lu, A. et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156, 1193-1206 (2014).

  • 17

    Franklin, B.S. et al. The ASC adapter has extracellular and "prionoid" activities that propagate inflammation. Nat. Immunol. 15, 727-737 (2014).

  • 18

    Franklin, B.S., Latz, E. and Schmidt, F. I. The intracellular and extracellular functions of ASC's spots. Immunol. Tower. 28174-87 (2018).

  • 19

    Kedersha, N. et al. Stress granules and treatment bodies are dynamically linked sites of mRNP remodeling. J. Cell Biol. 169871-884 (2005).

  • 20

    Man, S. M. et al. IRGB10 releases bacterial ligands for detection by AIM2 and caspase-11-NLRP3 inflammases. Cell 167, 382-396 (2016).

  • 21

    Bol, G.M. et al. Target DDX3 with a small molecule inhibitor for the treatment of lung cancer. EMBO Mol. Med. 7648-669 (2015).

  • 22

    Banani, S.F., Lee, H.O., Hyman, A.A. & Rosen, M. K. Biomolecular Condensates: Organizers of Cellular Biochemistry. Nat. Rev. Mol. Biol cell. 18285-298 (2017).

  • 23

    Shin, Y. & Brangwynne, C.P. Liquid phase condensation in cell physiology and disease. Science 357, ea4382 (2017).

  • 24

    Aditi, F., Folkmann, A. W. and Wente, S. R. The cytoplasmic hGle1A regulates stress granules by modulation of translation. Mol. Biol. Cell 261476-1490 (2015).

  • 25

    Hilliker, A., Gao, Z., Jankowsky, E. & Parker, R. The DAD-box DEAD-box protein modulates translation through the formation and resolution of an eIF4F-mRNA complex. Mol. Cell 43962-972 (2011).

  • 26

    Shih, J.-W. et al. Critical Roles of DDX3 helicase RNA and its interactions with eIF4E / PABP1 in the assembly of stress granules and the stress response. Biochem. J. 441, 119-129 (2012).

  • 27

    Cruciat, C.-M. et al. The DDX3 RNA helicase is a regulatory subunit of casein kinase 1 in Wnt-β-catenin signaling. Science 3391436-1441 (2013)

  • 28

    Soulat, D. et al. The DDX3X helicase with DEAD box is an essential component of the innate immune response dependent on TANK-binding kinase 1. EMBO J. 272135-2146 (2008).

  • 29

    Stunnenberg, M., Geijtenbeek, T.H. & Gringhuis, S.I. DDX3 in HIV-1 infection and detection: a paradox. Cytokine Growth Factor Rev. 40, 32-39 (2018).

  • 30

    Robinson, G. et al. New mutations target distinct subgroups of medulloblastomas. Nature 488, 43-48 (2012).

  • 31.

    H. J. Ditton, J. Zimmer, C. Kamp, E. E. Rajpert-De Meyts and P. Vogt. AZFa gene DBY (DDX3Y) is widely transcribed but the protein is limited to male germ cells by translation control. Hum. Mol. Broom. 132333-2341 (2004).

  • 32

    Vakilian, H. et al. DDX3Y, a region of the male-specific Y chromosome gene, can modulate neuronal differentiation. J. Proteome Res. 14, 3474-3483 (2015).

  • 33

    Chen, C.-Y. et al. Targeted inactivation of the mouse Ddx3x: essential roles of Ddx3x in placentation and embryogenesis. Hum. Mol. Broom. 252905-2922 (2016).

  • 34

    Li, Q. et al. DDX3X regulates cell survival and the cell cycle during early mouse embryonic development. J. Biomed. Res. 28, 282-291 (2014).

  • 35

    Jones, J.W. et al. The absence of melanoma 2 is necessary for the innate immune recognition of Francisella tularensis. Proc. Natl Acad. Sci. United States 1079771 to 9776 (2010).

  • 36

    Franchi, L. et al. The cytosolic flagellin requires Ipaf for the activation of caspase-1 and interleukin 1β in macrophages infected with salmonella. Nat. Immunol. 7576-582 (2006).

  • 37

    Van Gorp, H. et al. Family mutations of Mediterranean fever raise the mandatory requirement of microtubules in the activation of the pyrine inflammasome. Proc. Natl Acad. Sci. United States 11314384-14389 (2016).

  • 38

    Wheeler, J.R., Matheny, T., Jain S., Abrisch R., and R., R. Distinct steps in the assembly and disassembly of stress granules. eLife 5, e18413 (2016).

  • 39

    Szaflarski, W. et al. Vinca alkaloid drugs promote stress-induced translational repression and the formation of stress granules. Oncotarget 730307-30322 (2016).

  • 40

    Karki, R. et al. IRF8 regulates the transcription of Naips for the activation of the NLRC4 inflammasome. Cell 173920-933 (2018).

  • 41

    Tyanova, S., Temu, T. & Cox, J. The MaxQuant Computing Platform for Proteomics of Shotguns Based on Mass Spectrometry. Nat. protocols 112301-2319 (2016).

  • 42

    Kesavardhana, S. et al. The ubiquitination of ZBP1 / DAI and the detection of influenza vRNPs activate programmed cell death. J. Exp. Med. 2142217-22229 (2017).

  • 43

    Buchan, D. W. A. ​​and Jones, D. T. The PSIPRED protein test bench: 20 years later. Nucleic Acids Res. 47 (W1), W402 to W407 (2019).

  • [ad_2]

    Source link