[ad_1]
RGI Consortium Randolph Glacier Inventory (v.6.0): A set of global contour data for glaciers. Global measurements of land ice from space, Boulder, Colorado, United States (RGI Technical Report, 2017) https://doi.org/10.7265/N5-RGI-60.
Huss, M. & Farinotti, D. Thickness and volume of ice on all the glaciers of the world. J. Geophys. Res. 117, F04010 (2012).
Bojinski, S. et al. The concept of key climate variables in support of climate research, applications and policies. Taurus. A m. Meteorol. Soc. 951431-1443 (2014).
Huss, M. and Hock, R. Global hydrological response to future mass loss of glaciers. Nat. Clim. Chang. 8135-140 (2018).
Marzeion, B., Cogley, J.G., K. Richter and Parkes, D. Attribution of the overall mass loss of glaciers to anthropogenic and natural causes. Science 345919-921 (2014).
Radić, V. et al. Regional and global projections of glacier mass variations in the 21st century in response to climate scenarios from global climate models. Clim. Dyn. 42, 37-58 (2014).
Cogley, J. G. Geodetic and direct mass balance measurements: comparison and joint analysis. Ann. Glaciol. 50, 96-100 (2009).
Kaser, G., Cogley, J.G., Dyurgerov, B., Meier, F. and Ohmura, A. Mass balance of glaciers and ice caps: consensus estimates for 1961-2004. Geophysics Res. Lett. 33, L19501 (2006).
Dyurgerov, M. B. & Meier, M. F. Glaciers and the Changing Earth System: An Overview 2004. INSTAAR / OP-58 report (Instaar, 2005).
Ohmura, A. in The state of the planet: boundaries and challenges in geophysics Flight. 150 (Sparks eds., R.S.J. and Hawkesworth, C.J.) 239-257 (American Geophysical Union, 2004).
Gardner, A.S. et al. Reconciled estimate of the contribution of glaciers to sea level rise: 2003 to 2009. Science 340852-857 (2013).
Khan, S.A. et al. Mass balance of the Greenland Ice Cap: review Rep. Prog. Phys. 78046801 (2015).
IMBIE. Mass balance of the Antarctic ice sheet from 1992 to 2017. Nature 558219-222 (2018).
Watson, C.S. et al. Elevation of the world's average sea level relentlessly during the era of satellite altimeters. Nat. Clim. Chang. 5565-568 (2015).
Working Group on Terminology and Mass Balance Methods of the International Cryosphere Association Glossary of Mass Balance of Glaciers and Related Terms (UNESCO Digital Library, 2011) https://unesdoc.unesco.org/ark:/48223/pf0000192525.
Global Glacier Monitoring Service (WGMS) Glacier Change World Newsletter No. 2 (2014-2015) (WGMS, 2017) https://doi.org/10.5904/wgms-fog-2017-10.
Brun, F., E. Berthier, P. Wagnon, A. Kääb and D. Treichler. A spatially resolved estimate of mass balances of the high mountain glaciers of Asia from 2000 to 2016. Nat. Geosci. ten668-673 (2017); correction 11543 (2018).
Kääb, A., Treichler, D., Nuth, C., and Berthier, E. Conflicting estimates of glacier mass balance between 2003 and 2008 on the Pamir – Karakoram – Himalayas. cryosphere 9557-564 (2015).
Mernild, S.H., Lipscomb, W.H., Bahr, D.B., Radić, V. and Zemp, M. Global glacier changes: a revised assessment of the mass losses involved and uncertainties associated with sampling. cryosphere 7, 1565-1577 (2013).
Marzeion, B., G. Kaser, F. Maussion, and F. Champollion, N. Limited influence of climate change mitigation on short-term mass loss of glaciers. Nat. Clim. Chang. 8305-308 (2018).
Huss, M. and Hock, R. A new model of global change in glaciers and sea level rise. Front. Sci Earth
. 3, https://doi.org/10.3389/feart.2015.00054 (2015).
Huss, M., Hock, R., Bauder, A. and Funk, M. Conventional mass balance / reference area. J. Glaciol. 58, 278-286 (2012).
Paul, F. Influence of Changes in Glacier Extent and Surface Elevation on Modeled Mass Balance. cryosphere 4569-581 (2010).
Vaughan, D.G. et al. in Climate change 2013: the basis of the physical sciences. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) (Eds Stocker, T.F. et al.) 317-382 (Cambridge Univ Press, Cambridge, 2013).
Cogley, J. G. Shrinking glaciers in high mountain Asia. Ann. Glaciol. 5741-49 (2016).
Zemp, M. et al. Re-analyze series of glacier mass balance measurements. cryosphere 7, 1227-1245 (2013).
Marzeion, B., Leclercq, P.W., Cogley, J.G. & Jarosch, A.H. cryosphere 92399-2404 (2015).
Huss, M. Density assumptions for conversion of geodesic glacier volume change to mass change. cryosphere 7877-887 (2013).
Fountain, A. G. & Vecchia, A. How many piles is needed to measure the mass balance of a glacier? Geogr. Ann. Ser. A 81563-573 (1999).
Lliboutry, L. Multivariate statistical analysis of annual glacier balances. J. Glaciol. 13371-392 (1974).
Cox, L. H. & March, R. S. Comparison of geodetic and glaciological mass balance techniques, Glacier Gulkana, Alaska, United States of America. J. Glaciol. 50, 363-370 (2004).
Thibert, E., White, R., Vincent, C. and Eckert, N. Measurements of glaciological and volumetric mass balance: analysis of errors over 51 years for Glacier de Sarennes, French Alps. J. Glaciol. 54522-532 (2008).
Huss, M., Bauder, A. and Funk, M. Homogenization of time series of long-term mass balance. Ann. Glaciol. 50198-206 (2009).
Andreassen, L.M., Elvehøy, H., Kjøllmoen, B. and Engeset, R. V. Reanalysis of a long-term series of glaciological and geodetic mass balance of 10 Norwegian glaciers. cryosphere ten535-552 (2016).
Thomson, L., Zemp, M., Copland, L., Cogley, J.G. and Ecclestone, M. A. Comparison of geodetic and glaciological mass balances of White Glacier, Axel Heiberg Island, Canada. J. Glaciol. 63, 55-66 (2016).
Wang, P., Li, Z., Li, H., Wang, W. and Yao, H. Comparison of glaciological and geodesic mass balance at Urumqi Glacier No. 1, Tian Shan, Central Asia. Global Planet. Change 114, 14-22 (2014).
Basantes-Serrano, R. et al. Slight mass loss revealed by the reanalysis of observations of mass balance of glaciers on Antisana Glaciar 15α (internal tropical regions) during the period 1995-2012. J. Glaciol. 62, 124-136 (2016).
Fischer, M., Huss, M. and Hoelzle, M. Altitude of the surface and mass changes of all Swiss glaciers, 1980-2010. cryosphere 9525-540 (2015).
Vijay, S. & Braun, M. Rate of change in altitude of Lahaul-Spiti glaciers (western Himalayas, India) in 2000-2012 and 2012-2013. Remote Sens. 81038 (2016).
The Bris, R. & Paul, F. Glacier – specific elevation changes in parts of western Alaska. Ann. Glaciol. 56, 184-192 (2015).
Falaschi, D., Bravo, C., Masiokas, M., Villalba, R. and Rivera, A. First inventory of glaciers and recent changes in the glacier zone in the Monte San Lorenzo region (47 ° S), south from Patagonia, South America. Arct. Antarct. Alp. Res. 45, 19-28 (2013).
C. Larsen, R. J. Motyka, A. A. Arendt, A. Echelmeyer, and P. Geissler. E. Glacier moving in southeastern Alaska and northwestern British Columbia and contributing to the rise in sea level. J. Geophys. Res. 112, F01007 (2007).
L. Girod, C. Nuth, A. Kääb, MR W. McNabb and O. MMASTER: Improvement of DEM ASTER for monitoring altitude change. Remote Sens. 9704 (2017).
Nuth, C. & Kääb, A. Corrections of co-registration and bias of satellite elevation data sets to quantify the change in glacier thickness. cryosphere 5, 271-290 (2011).
Her and. DEM 8 meters high mountain in Asia from cross-track optical imagery (v.1.0) (NASA National Snow and Ice Center (NSIDS DAAC) Distributed Active Archives Center, 2017) https://doi.org/10.5067/GSACB044M4PK.
McNabb, R., Nuth, C., Kääb, A. and Girod, L. Sensitivity of estimation of the mass balance of geodetic glaciers to the interpolation of voids in the DEM. cryosphere 13, 895-910 https://doi.org/10.5194/tc-13-895-2019 (2019).
Korsgaard, N.J. et al. Digital elevation model and orthophotographs of Greenland after aerial photographs from 1978 to 1987. Sci. The data 3160032 (2016).
Pfeffer, W. T. et al. The inventory of glaciers Randolph: a complete inventory of glaciers. J. Glaciol. 60537-552 (2014).
GLIMS Glacier Database (GLIMS and National Snow and Ice Data Center (NSIDC), 2005) https://doi.org/10.7265/N5V98602.
Rastner, P. et al. First complete inventory of glaciers and ice caps in Greenland. cryosphere 6, 1483-1495 (2012).
Huber, J., Cook, J., Paul, F. and Zemp, M. Complete Inventory of Antarctic Peninsula Glaciers, based on Landsat 7 images from 2000 to 2002 and other pre-existing data sets. Earth Syst. Sci. The data 9115-131 (2017).
Fountain, A.G., Basagic, H.J., IV and Niebuhr, S. Glaciers in equilibrium, McMurdo Dry Valleys, Antarctica. J. Glaciol. 62976-989 (2016).
Mernild, S.H. et al. Glacial changes in the circumpolar and subarctic Arctic from the mid-1980s to the late 2000s. Geogr. Tidsskr. J. Geogr. 115, 39-56 (2015).
Hannesdóttir, H., H. Björnsson, F. Pálsson, Aðalgeirsdóttir, G. & Guðmundsson, S. Changes in the Vatnajökull Ice Cap, Iceland, between ~ 1890 and 2010. cryosphere 9565-585 (2015).
Khromova, T. et al. Impacts of climate change on mountain glaciers in Russia. Reg. About. Change 18, 1-19 (2019).
Global Terrestrial Network for Glaciers GTN-G Glacier Regions (GTN-G, 2017) https://doi.org/10.5904/gtng-glacreg-2017-07.
Radić, V. & Hock, R. Regional and global volumes of glaciers derived from the statistical scaling of inventory data. J. Geophys. Res. 115, F001373 (2010).
Dyurgerov, M. B. Mass balance and glacier regime: measurement and analysis data. Occasional Paper No. 55 (Arctic and Alpine Research Institute, Colorado Univ., 2002).
Letréguilly, A. and Reynaud, L. Spatial and temporal distribution of mass balance of glaciers in the northern hemisphere. Arct. Alp. Res. 22, 43-50 (1990).
Cogley, J. G. and Adams, W. P. Mass balance of glaciers other than ice sheets. J. Glaciol. 44315-325 (1998).
Krzywinski, M. and Altman, N. Analysis of variance and blocking. Nat. The methods 11699-700 (2014).
Eckert, N., H. Baya, E. Vincent and Vincent. C. Time signal extraction from a series of winter and summer mass balances: application to a six – decade record at the Sarennes Glacier, French Alps. J. Glaciol. 57134-150 (2011).
Puga, J. L., Statistics of Krzywinski and Altman, N. Bayesian. Nat. The methods 12377-378 (2015); corrigendum 121098 (2015).
Cogley, J. G. Area of the ocean. Mar Geod. 35379-388 (2012).
GCOSGlobal Climate Observing System: Implementation Needs (World Meteorological Organization, 2016).
[ad_2]
Source link