[ad_1]
Mishima, O., Calvert, L.D. & Whalley, E. "Melting ice" at 77 K and 10 kbar: a new method for producing amorphous solids. Nature 310393-395 (1984).
Gallo, P. et al. Water: a story of two liquids. Chem. Tower. 1167463-7500 (2016).
Tse, J. et al. The mechanisms of amorphization of ice I induced by pressureh. Nature 400647 to 649 (1999).
Shephard, J. J. et al. Is high-density amorphous ice simply a "derailed" condition along ice trail I to ice IV? J. Phys. Chem. Lett. 81645-1650 (2017).
Strässle, T., Saitta, A.M., Klotz, S. and Braden, M. Phonon, Dispersion of ice under pressure. Phys. Rev. Lett. 93225901 (2004).
Strässle, T., Klotz S., Hamel G., Koza, M.M. & Schober, H. Experimental evidence of a cross between two distinct mechanisms of amorphization in ice Ih under pressure. Phys. Rev. Lett. 99175501 (2007).
Wang, Y., Zhang, H., Yang, X., Jiang, S. and Goncharov, A. F. Kinetic limits and phase transformations of high pressure ice I. J. Chem. Phys. 148044508 (2018).
Lin, C.L. et al. Kinetic-controlled two-step amorphism and amorphous-amorphous transition in ice. Phys. Rev. Lett. 119135701 (2017).
Johari, G. P. Liquid amorphous ice state under low density pressure above T
g. J. Phys. Chem. B 1024711-4714 (1998).
Seidl, M. et al. Volumetric study compatible with a glass-liquid transition in amorphous ice under pressure. Phys. Rev. B 83100201 (2011).
Elsaesser, M.S., K. Winkel, E. Mayer and Loerting, T. Reversibility and isotopic effect of calorimetric glass → liquid transition of low density amorphous ice. Phys. Chem. Chem. Phys. 12708 to 712 (2010).
Giovambattista, N., Angell, C., A., Sciortino, F. and Stanley, H., Glass transition temperature of water: study by simulation. Phys. Rev. Lett. 93047801 (2004).
Lin, C.L., Smith, J.S., Liu, X.Q., Tse, J.S. and Yang, W.G. Venture in the water no man's land: structural transformations of the solid H2O under fast compression and decompression. Phys. Rev. Lett. 121225703 (2018).
Finney, J. L. et al. Structure of a new dense amorphous ice. Phys. Rev. Lett. 89205503 (2002).
Tulk, C.A., Hart, R., Klug, D.D., Benmore, C.J. and Neuefeind, J. Add a scale of lengths to the debate on polyamorphic ice. Phys. Rev. Lett. 97115503 (2006).
Nelmes, R.J. et al. High density amorphous ice annealed under pressure. Nat. Phys. 2414-418 (2006).
Kohl, I., Mayer, E. & Hallbrucker, A. Ice XII is formed during the compression of hexagonal ice at 77 K via high-density amorphous water. Phys. Chem. Chem. Phys. 3602-605 (2001).
Salzmann, C.G., T. Loerting, I. Kohl, E. Mayer and E. Hallbrucker, A. Pure ice IV from high-density amorphous ice. J. Phys. Chem. B 1065587-5590 (2002).
Salzmann, C.G., Radaelli, P.G., Hallbrucker, A., Mayer, E. & Finney, J.L. Preparation and structures of ice phases ordered to hydrogen. Science 311, 1758-1761 (2006).
Salzmann, C.G. et al. Detailed crystallographic analysis of the 6th order phase transition of ice VI to ice XV. J. Chem. Phys. 145(2016).
Klotz, S., G. Hamel, Loveday, J.S., Nelmes, R.J. and Guthrie, M. Recrystallization of HDA ice under pressure by in situ neutron diffraction at 3.9 GPa. Z. Kristallogr. 218117-122 (2003).
Hallbrucker, A., Mayer, E. and Johari, G. P. Glassy transition in hexagonal amorphous ice under pressure: comparison with amorphous forms made of vapor and liquid. J. Phys. Chem. 937751-7552 (1989).
Tse, J. S. & D. D. Klug, D. D. Pressure-amorphized ice – an atomistic perspective. Phys. Chem. Chem. Phys. 148255-8263 (2012).
Tse, J. S. & Klein, M. L. Amorphization of Ice I induced by pressureh. J. Chem. Phys. 923992-3994 (1990).
Limmer, D. T. & Chandler, D. Theory of Amorphous Ice. Proc. Natl Acad. Sci. United States 1119413-9418 (2014).
Limmer, D. T. & Chandler, D. Comment on "Spontaneous Separation in Liquid-Liquid Phase of Water". Phys. Rev. E 91016301 (2015).
English, N. J. & Tse, J. S. Simulation of ice crystallite precursor formation in water undercooled by molecular dynamics in parallel: nucleation start behavior and role of system size Phys. Rev. E 92032132 (2015).
Limmer, D.T. & Chandler, D. Corresponding states for mesostructure and over-cooled water dynamics. Faraday discuss. 167, 485-498 (2013).
Sidhu, S.S., Heaton, L.R., Zauberis, D.D. & Campos, F.P. Neutron diffraction study of the titanium-zirconium system. J. Appl. Phys. 271040-1042 (1956).
Khvostantsev, L. G. A toroidal device verkh – niz (top to bottom) to generate a high pressure. High temperature. High press. 16165-169 (1984).
Ripmeester, J. A. and Alavi, S. Some current challenges in the science of clathrate hydrates: nucleation, decomposition and memory effect. Curr. Opin. Solid State Sci. 20, 344-351 (2016).
[ad_2]
Source link