Absence of amorphous forms when the ice is compressed at low temperature



[ad_1]

  • 1.

    Mishima, O., Calvert, L.D. & Whalley, E. "Melting ice" at 77 K and 10 kbar: a new method for producing amorphous solids. Nature 310393-395 (1984).

  • 2

    Gallo, P. et al. Water: a story of two liquids. Chem. Tower. 1167463-7500 (2016).

  • 3

    Tse, J. et al. The mechanisms of amorphization of ice I induced by pressureh. Nature 400647 to 649 (1999).

  • 4

    Shephard, J. J. et al. Is high-density amorphous ice simply a "derailed" condition along ice trail I to ice IV? J. Phys. Chem. Lett. 81645-1650 (2017).

  • 5

    Strässle, T., Saitta, A.M., Klotz, S. and Braden, M. Phonon, Dispersion of ice under pressure. Phys. Rev. Lett. 93225901 (2004).

  • 6

    Strässle, T., Klotz S., Hamel G., Koza, M.M. & Schober, H. Experimental evidence of a cross between two distinct mechanisms of amorphization in ice Ih under pressure. Phys. Rev. Lett. 99175501 (2007).

  • 7.

    Wang, Y., Zhang, H., Yang, X., Jiang, S. and Goncharov, A. F. Kinetic limits and phase transformations of high pressure ice I. J. Chem. Phys. 148044508 (2018).

  • 8

    Lin, C.L. et al. Kinetic-controlled two-step amorphism and amorphous-amorphous transition in ice. Phys. Rev. Lett. 119135701 (2017).

  • 9

    Johari, G. P. Liquid amorphous ice state under low density pressure above T
    g. J. Phys. Chem. B 1024711-4714 (1998).

  • ten.

    Seidl, M. et al. Volumetric study compatible with a glass-liquid transition in amorphous ice under pressure. Phys. Rev. B 83100201 (2011).

  • 11

    Elsaesser, M.S., K. Winkel, E. Mayer and Loerting, T. Reversibility and isotopic effect of calorimetric glass → liquid transition of low density amorphous ice. Phys. Chem. Chem. Phys. 12708 to 712 (2010).

  • 12

    Giovambattista, N., Angell, C., A., Sciortino, F. and Stanley, H., Glass transition temperature of water: study by simulation. Phys. Rev. Lett. 93047801 (2004).

  • 13

    Lin, C.L., Smith, J.S., Liu, X.Q., Tse, J.S. and Yang, W.G. Venture in the water no man's land: structural transformations of the solid H2O under fast compression and decompression. Phys. Rev. Lett. 121225703 (2018).

  • 14

    Finney, J. L. et al. Structure of a new dense amorphous ice. Phys. Rev. Lett. 89205503 (2002).

  • 15

    Tulk, C.A., Hart, R., Klug, D.D., Benmore, C.J. and Neuefeind, J. Add a scale of lengths to the debate on polyamorphic ice. Phys. Rev. Lett. 97115503 (2006).

  • 16

    Nelmes, R.J. et al. High density amorphous ice annealed under pressure. Nat. Phys. 2414-418 (2006).

  • 17

    Kohl, I., Mayer, E. & Hallbrucker, A. Ice XII is formed during the compression of hexagonal ice at 77 K via high-density amorphous water. Phys. Chem. Chem. Phys. 3602-605 (2001).

  • 18

    Salzmann, C.G., T. Loerting, I. Kohl, E. Mayer and E. Hallbrucker, A. Pure ice IV from high-density amorphous ice. J. Phys. Chem. B 1065587-5590 (2002).

  • 19

    Salzmann, C.G., Radaelli, P.G., Hallbrucker, A., Mayer, E. & Finney, J.L. Preparation and structures of ice phases ordered to hydrogen. Science 311, 1758-1761 (2006).

  • 20

    Salzmann, C.G. et al. Detailed crystallographic analysis of the 6th order phase transition of ice VI to ice XV. J. Chem. Phys. 145(2016).

  • 21

    Klotz, S., G. Hamel, Loveday, J.S., Nelmes, R.J. and Guthrie, M. Recrystallization of HDA ice under pressure by in situ neutron diffraction at 3.9 GPa. Z. Kristallogr. 218117-122 (2003).

  • 22

    Hallbrucker, A., Mayer, E. and Johari, G. P. Glassy transition in hexagonal amorphous ice under pressure: comparison with amorphous forms made of vapor and liquid. J. Phys. Chem. 937751-7552 (1989).

  • 23

    Tse, J. S. & D. D. Klug, D. D. Pressure-amorphized ice – an atomistic perspective. Phys. Chem. Chem. Phys. 148255-8263 (2012).

  • 24

    Tse, J. S. & Klein, M. L. Amorphization of Ice I induced by pressureh. J. Chem. Phys. 923992-3994 (1990).

  • 25

    Limmer, D. T. & Chandler, D. Theory of Amorphous Ice. Proc. Natl Acad. Sci. United States 1119413-9418 (2014).

  • 26

    Limmer, D. T. & Chandler, D. Comment on "Spontaneous Separation in Liquid-Liquid Phase of Water". Phys. Rev. E 91016301 (2015).

  • 27

    English, N. J. & Tse, J. S. Simulation of ice crystallite precursor formation in water undercooled by molecular dynamics in parallel: nucleation start behavior and role of system size Phys. Rev. E 92032132 (2015).

  • 28

    Limmer, D.T. & Chandler, D. Corresponding states for mesostructure and over-cooled water dynamics. Faraday discuss. 167, 485-498 (2013).

  • 29

    Sidhu, S.S., Heaton, L.R., Zauberis, D.D. & Campos, F.P. Neutron diffraction study of the titanium-zirconium system. J. Appl. Phys. 271040-1042 (1956).

  • 30

    Khvostantsev, L. G. A toroidal device verkh – niz (top to bottom) to generate a high pressure. High temperature. High press. 16165-169 (1984).

  • 31.

    Ripmeester, J. A. and Alavi, S. Some current challenges in the science of clathrate hydrates: nucleation, decomposition and memory effect. Curr. Opin. Solid State Sci. 20, 344-351 (2016).

  • [ad_2]

    Source link