[ad_1]
Snigirev, A., Kohn, V., Snigireva, I. & Lengeler, B. A compound refractive lens for high energy X-ray focusing. Nature 38449-51 (1996).
Ferray, M. et al. Multi-harmonic conversion of the 1064 nm radiation in noble gases. J. Phys. B 21, L31 (1988).
Rocca, J. J. Flexible X-ray table lasers. Rev. Sci. instrum. 703799-3827 (1999).
Giulietti, D. & Gizzi, L. A. X-ray emission from laser-produced plasmas. Riv. Nuovo Cim. 21, 1-93 (1998).
Marr, G. V. Synchrotron Radiation Handbook: Vacuum and Ultra-Violet Vacuum X-Ray Procedures Flight. 2 (Elsevier, Amsterdam, 2013).
Allaria, E. et al. Very consistent and stable pulses of free electron laser seeded with Fermi in the extreme ultraviolet. Nat. Photon. 6699-704 (2012).
Baez, A. V. A freestanding metal Fresnel zone plate for focusing ultra-violet and soft X-rays. Nature 186958 (1960).
Röntgen, W. C. Über eine neue Art von Strahlen: Vorläufige Mittheilung. Sitzungsber. Phys. Med. Gesell. Wurzburg (1895).
Santoro, G. et al. Use of the intermediate focus for grazing incidence low angle and wide angle X-ray scattering experiments on the P03 light line of PETRA III, DESY. Rev. Sci. instrum. 85043901 (2014).
Chollet, M. et al. The X-ray pump-probe instrument of the Linac coherent light source. J. Synchrotron Radiat. 22503-507 (2015).
Heimann, P. et al. Refractive lenses composed as pre-focusing optics for X-ray X-ray radiation. J. Synchrotron Radiat. 23425-429 (2016).
Lengeler, B. et al. A microscope for hard x-rays based on parabolic compound refractive lenses. Appl. Phys. Lett. 743924-3926 (1999).
Schroer, C.G. et al. X-ray nanoprobe based on refractive X-ray lenses. Appl. Phys. Lett. 87124103 (2005).
Meijer, J.-M. et al. Observation of solid-solid transitions in 3D crystals of colloidal superballs. Nat. Common. 814352 (2017).
Schroer, C.G. et al. Consistent X-ray diffraction imaging with nanofocused illumination. Phys. Rev. Lett. 101090801 (2008).
Wang, Y., Yun, W. and Jacobsen, C. Fresnel Achromatic Optics for Very Wide Band Imaging in Extreme Ultraviolet and X-rays. Nature 42450 (2003).
Pan, H. et al. Low chromatic Fresnel lens for wide band attosecond XUV pulse applications. Opt. Express 24, 16788 to 16798 (2016).
Hahn, E. L. Nuclear induction due to free Larmor precession. Phys. Tower. 77297-298 (1950).
Wu, M., S. Chen, S. Camp, S. Schafer & M. B. Gaarde. Theory of attosecond transient absorption in strong field. J. Phys. B 49, 062003 (2016).
Bengtsson, S. et al. Spatio-temporal control of free disintegration in the extreme ultraviolet. Nat. Photon. 11, 252-258 (2017).
Liao, C.T., Sandhu, A., Camp, S., Schafer, KJ and Gaarde, MB Beyond the Single-atom Response in Absorption Curves: Dense Helium Probes, Treated laser, with attosecond pulse trains. Phys. Rev. Lett. 114143002 (2015).
Schütte, B., Arbeiter, M., Fennel, T., Vrakking, MJJ and Rouzée, A. Clusters of rare gases in intense ultraviolet pulses from a source of harmonic order high. Phys. Rev. Lett. 112, 073003 (2014).
Semushin, S. & Malka, V. Design of high density gas jet nozzles for the production of laser targets. Rev. Sci. instrum. 722961-2655 (2001).
Tzallas, P., Charalambidis, D., Papadogiannis, N.A., Witte, K. and Tsakiris, G.D. Direct observation of an attosecond light coupling. Nature 426267 (2003).
Takahashi, E.J., Lan, P., Mücke, O.D., Nabekawa, Y. and Midorikawa, K. Attosecond, nonlinear optics using single attosecond pulses at the gigawatt scale. Nat. Common. 42691 (2013).
Manschwetus, B. et al. Dual two-photon neon ionization using an intense attosecond pulse train. Phys. Rev. AT 93, 061402 (2016).
Barillot, T.R. et al. Towards XUV pump-probe experiments in femtosecond to sub-femtosecond regime: new measurement of the two-photon helium ionization cross-section. Chem. Phys. Lett. 683, 38-42 (2017).
Rupp, D. et al. Consistent diffractive imaging of unique helium nanodroplets with a high harmonic generation source. Nat. Common. 8493 (2017).
Flögel, M. et al. Rabi oscillations in extreme ultraviolet ionization of atomic argon. Phys. Rev. AT 95021401 (2017).
Schafer, K. J. & Kulander, K. C. Generation of high harmonics from ultra-fast pump lasers. Phys. Rev. Lett. 78638 to 641 (1997).
Frühling, U. et al. Single scanning X-ray camera driven by a terahertz field. Nat. Photon. 3, 523 (2009).
Mauritsson, J. et al. Measurement and control of the frequency modulation rate of high order harmonic pulses. Phys. Rev. AT 70021801 (2004).
Valentin, C. et al. Spectral selection of high harmonics via spatial filtering. In High brightness sources and light interactions HW3A.3 (Optical Society of America, 2018).
Neidel, C. et al. Probe the molecular dipoles as a function of time on the attosecond time scale. Phys. Rev. Lett. 111033001 (2013).
Drescher, L. et al. Communication: XUV transient absorption spectroscopy of the photodissociation of iodomethane and iodobenzene. J. Chem. Phys. 145011101 (2016).
Galbraith, M.C.E. et al. Femtosecond pbadage of conical intersections in the benzene cation. Nat. Common. 81018 (2017).
He, X. et al. Spatial and spectral properties of high order harmonic emission in argon for seeding applications. Phys. Rev. AT 79063829 (2009).
Gademann, G., Ple, F., Paul, P.-M. & Vrakking, M. J. J. Stabilization of the carrier envelope phase of a terawatt modulated pulse amplifier for the generation of intense isolated attosecond pulses. Opt. Express 1924922 (2011).
Born, M. & Wolf, E. Principles of optics 7th enlarged edition (Cambridge Univ Press, Cambridge, 1999).
Wiese, W. L. Smith, W. & Glennon, B.M. Probabilities of atomic transition: hydrogen by neon. Technical Report, National Standardized Reference Data System. (NBS, 1966).
Wiese, W. L. Smith, W. & Miles, B.M. Probability of atomic transition: sodium by calcium. Technical Report, National Standard Reference Data System (NBS, 1969).
Source link