Catch and reverse a quantum leap in midair



[ad_1]

  • 1.

    Bohr, N. On the constitution of atoms and molecules. Part I. Binding of electrons by positive nuclei. Phil Mag. 26, 1-25 (1913).

  • 2

    Nagourney, W., Sandberg, J. and Dehmelt, H. Shelf electron optical amplifier: observation of quantum leaps. Phys. Rev. Lett. 562797-2799 (1986).

  • 3

    Sauter, T., Neuhauser, W., Blatt, R. and Toschek, P. E. Observation of quantum leaps. Phys. Rev. Lett. 571696 (1986).

  • 4

    Bergquist, J.C., Hulet, R.G., Itano, W.M. and Wineland, D. J. Observation of quantum leaps in a single atom. Phys. Rev. Lett. 571699-1702 (1986).

  • 5

    Carmichael, H. J. An open systems approach in quantum optics (Springer, 1993).

  • 6

    Gardiner, C.W., Parkins, A.S. & Zoller, P. Stochastic quantum differential equations with wave function and quantum jump simulation methods. Phys. Rev. AT 464363-4381 (1992).

  • 7.

    Dalibard, J., Castin, Y. and Mølmer, K. Wave function approach for dissipative processes in quantum optics. Phys. Rev. Lett. 68580-583 (1992).

  • 8

    Plenio, M.B. & Knight, P.L.The quantum jump approach of dissipative dynamics in quantum optics. Rev. Mod. Phys. 70101-144 (1998).

  • 9

    Korotkov, A. N. Continuous quantum measurement of a double point. Phys. Rev. B 605737-5742 (1999).

  • ten.

    Einstein, A. Strahlungs-emission und-adsorbing nach der Quantteheorie. Verh. Deutsch. Phys. Ges. 18318-323 (1916).

  • 11

    Einstein, A. Quantteheorie der Strahlung. Phys. Z. 18121-128 (1917).

  • 12

    Schrödinger, E. Are there quantum jumps? French. J. Phil. Sci. 3109-123; 233-242 (1952).

  • 13

    Basché, T., Kummer, S. & Brauchle, C. Direct spectroscopic observation of quantum leaps of a single molecule. Nature 373132-134 (1995).

  • 14

    Peil, S. & Gabrielse, G. Observation of the quantum limit of an electron cyclotron: QND measurements of quantum jumps between Fock states. Phys. Rev. Lett. 831287-1290 (1999).

  • 15

    Gleyzes, S. S. et al. Quantum light jumps recording the birth and death of a photon in a cavity. Nature 446297-300 (2007).

  • 16

    Guerlin, C. et al. Progressive collapse of field states and quantum photon counting without demolition. Nature 448889 to 893 (2007).

  • 17

    Jelezko, F. et al. Single spin states in a defect center resolved by optical spectroscopy. Appl. Phys. Lett. 812160 (2002).

  • 18

    Neumann, P. et al. Single reading of a single nuclear spin. Science 329542-544 (2010).

  • 19

    Robledo, L. et al. High fidelity projective reading of a spin quantum register in the solid state. Nature 477574-578 (2011).

  • 20

    Vijay, R., Slichter, D.H. and Siddiqi, I. Observation of quantum leaps in a superconducting artificial atom. Phys. Rev. Lett. 106110502 (2011).

  • 21

    Hatridge, M. et al. Quantum action of an individual measure of variable strength. Science 339178-181 (2013).

  • 22

    Deléglise, S. et al. Reconstruction of non-classical cavity field states with snapshots of their decoherence. Nature 455510-514 (2008).

  • 23

    Sayrin, C. et al. Real-time quantum feedback prepares and stabilizes states of the number of photons. Nature 477, 73-77 (2011).

  • 24

    Sun, L. et al. Tracking photon jumps with repeated measurements of the non-demolition parity. Nature 511444-448 (2014).

  • 25

    Ofek, N. et al. Demonstration of quantum error correction that extends the life of quantum information. Nature 536441-445 (2016).

  • 26

    Porrati, M. & Putterman, S. Collapse of the wave function due to null measurements: the origin of intermittent atomic fluorescence. Phys. Rev. AT 36929-932 (1987).

  • 27

    Mabuchi, H. & Zoller, P. Inversion of quantum jumps in quantum optical systems under continuous observation. Phys. Rev. Lett. 76, 3108-3111 (1996).

  • 28

    Ruskov, R., Mizel, A. and Korotkov, A. N. Crossover of the qubit phase dynamics in the presence of a weak measure of negative result. Phys. Rev. B 75220501 (2007).

  • 29

    Volz, J., Gehr, R., Dubois, G., Esteve, J. and Reichel, J. Measurement of the internal state of a single atom without exchange of energy. Nature 475210-213 (2011).

  • 30

    Ristè, D. et al. Deterministic entanglement of superconducting qubits by parity and feedback. Nature 502350-354 (2013).

  • 31.

    Murch, K.W., Weber, S.J., Beck, K.M., Ginossar, E. & Siddiqi, I. Reduction of Radiative Decay of Atomic Coherence in Vacuum. Nature 499, 62-65 (2013).

  • 32

    Weber, S.J. et al. Mapping the optimal route between two quantum states. Nature 511570-573 (2014).

  • 33

    Katz, N. et al. Consistent state evolution in a superconducting qubit from the measure of partial collapse. Science 3121498-1500 (2006).

  • 34

    Cook, R. J. What are quantum jumps? Phys. scr. 198849 (1988).

  • 35

    Bergeal, N. et al. Amplification preserves the phase near the quantum limit with a Josephson ring modulator. Nature 465, 64-68 (2010).

  • 36

    Minev, Z. et al. Quantum electrodynamics of planar multilayer circuits. Phys. Rev. Appl. 5, 044021 (2016).

  • 37

    Lecocq, F. et al. Manufacture of junctions by evaporation of shadows without suspension bridge. nanotechnology 22315302 (2011).

  • 38

    Rigetti, C. T. Quantum gates for superconducting Qubits. PhD Thesis, Yale Univ. (2009).

  • 39

    Minev, Z. K. Capture and reverse a quantum leap in mid-flight. PhD Thesis, Yale Univ. (2019).

  • 40

    Chow, J.M. et al. Optimized driving of superconducting artificial atoms for improved gates at a qubit. Phys. Rev. AT 82040305 (2010).

  • 41

    Reed, Mr. D. Correction of entanglement and quantum error with superconducting Qubits. PhD Thesis, Yale Univ. (2013).

  • 42

    Bylander, J. et al. Dynamic decoupling noise spectroscopy with superconducting flux qubit. Nat. Phys. 7565-570 (2011).

  • 43

    Eichler, C. et al. Observation of entanglement between traveling microwave photons and a superconducting qubit. Phys. Rev. Lett. 109, 240501 (2012).

  • 44

    Liu, Y. Quantum feedback control of several superconducting Qubits. PhD Thesis, Yale Univ. (2016).

  • 45

    Ristè, D., Bultink, C.C., Lehnert, K.W. & DiCarlo, L. Feedback control of a solid-state qubit using a high fidelity projective measurement. Phys. Rev. Lett. 109, 240502 (2012).

  • [ad_2]

    Source link