Changes in the global mass of glaciers and their contributions to sea-level rise from 1961 to 2016



[ad_1]

  • 1.

    RGI Consortium Randolph Glacier Inventory (v.6.0): A set of global contour data for glaciers. Global measurements of land ice from space, Boulder, Colorado, United States (RGI Technical Report, 2017) https://doi.org/10.7265/N5-RGI-60.

  • 2

    Huss, M. & Farinotti, D. Thickness and volume of ice on all the glaciers of the world. J. Geophys. Res. 117, F04010 (2012).

  • 3

    Bojinski, S. et al. The concept of key climate variables in support of climate research, applications and policies. Taurus. A m. Meteorol. Soc. 951431-1443 (2014).

  • 4

    Huss, M. and Hock, R. Global hydrological response to future mass loss of glaciers. Nat. Clim. Chang. 8135-140 (2018).

  • 5

    Marzeion, B., Cogley, J.G., K. Richter and Parkes, D. Attribution of the overall mass loss of glaciers to anthropogenic and natural causes. Science 345919-921 (2014).

  • 6

    Radić, V. et al. Regional and global projections of glacier mass variations in the 21st century in response to climate scenarios from global climate models. Clim. Dyn. 42, 37-58 (2014).

  • 7.

    Cogley, J. G. Geodetic and direct mass balance measurements: comparison and joint analysis. Ann. Glaciol. 50, 96-100 (2009).

  • 8

    Kaser, G., Cogley, J.G., Dyurgerov, B., Meier, F. and Ohmura, A. Mass balance of glaciers and ice caps: consensus estimates for 1961-2004. Geophysics Res. Lett. 33, L19501 (2006).

  • 9

    Dyurgerov, M. B. & Meier, M. F. Glaciers and the Changing Earth System: An Overview 2004. INSTAAR / OP-58 report (Instaar, 2005).

  • ten.

    Ohmura, A. in The state of the planet: boundaries and challenges in geophysics Flight. 150 (Sparks eds., R.S.J. and Hawkesworth, C.J.) 239-257 (American Geophysical Union, 2004).

  • 11

    Gardner, A.S. et al. Reconciled estimate of the contribution of glaciers to sea level rise: 2003 to 2009. Science 340852-857 (2013).

  • 12

    Khan, S.A. et al. Mass balance of the Greenland Ice Cap: review Rep. Prog. Phys. 78046801 (2015).

  • 13

    IMBIE. Mass balance of the Antarctic ice sheet from 1992 to 2017. Nature 558219-222 (2018).

  • 14

    Watson, C.S. et al. Elevation of the world's average sea level relentlessly during the era of satellite altimeters. Nat. Clim. Chang. 5565-568 (2015).

  • 15

    Working Group on Terminology and Mass Balance Methods of the International Cryosphere Association Glossary of Mass Balance of Glaciers and Related Terms (UNESCO Digital Library, 2011) https://unesdoc.unesco.org/ark:/48223/pf0000192525.

  • 16

    Global Glacier Monitoring Service (WGMS) Glacier Change World Newsletter No. 2 (2014-2015) (WGMS, 2017) https://doi.org/10.5904/wgms-fog-2017-10.

  • 17

    Brun, F., E. Berthier, P. Wagnon, A. Kääb and D. Treichler. A spatially resolved estimate of mass balances of the high mountain glaciers of Asia from 2000 to 2016. Nat. Geosci. ten668-673 (2017); correction 11543 (2018).

  • 18

    Kääb, A., Treichler, D., Nuth, C., and Berthier, E. Conflicting estimates of glacier mass balance between 2003 and 2008 on the Pamir – Karakoram – Himalayas. cryosphere 9557-564 (2015).

  • 19

    Mernild, S.H., Lipscomb, W.H., Bahr, D.B., Radić, V. and Zemp, M. Global glacier changes: a revised assessment of the mass losses involved and uncertainties associated with sampling. cryosphere 7, 1565-1577 (2013).

  • 20

    Marzeion, B., G. Kaser, F. Maussion, and F. Champollion, N. Limited influence of climate change mitigation on short-term mass loss of glaciers. Nat. Clim. Chang. 8305-308 (2018).

  • 21

    Huss, M. and Hock, R. A new model of global change in glaciers and sea level rise. Front. Sci Earth
    . 3, https://doi.org/10.3389/feart.2015.00054 (2015).

  • 22

    Huss, M., Hock, R., Bauder, A. and Funk, M. Conventional mass balance / reference area. J. Glaciol. 58, 278-286 (2012).

  • 23

    Paul, F. Influence of Changes in Glacier Extent and Surface Elevation on Modeled Mass Balance. cryosphere 4569-581 (2010).

  • 24

    Vaughan, D.G. et al. in Climate change 2013: the basis of the physical sciences. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) (Eds Stocker, T.F. et al.) 317-382 (Cambridge Univ Press, Cambridge, 2013).

  • 25

    Cogley, J. G. Shrinking glaciers in high mountain Asia. Ann. Glaciol. 5741-49 (2016).

  • 26

    Zemp, M. et al. Re-analyze series of glacier mass balance measurements. cryosphere 7, 1227-1245 (2013).

  • 27

    Marzeion, B., Leclercq, P.W., Cogley, J.G. & Jarosch, A.H. cryosphere 92399-2404 (2015).

  • 28

    Huss, M. Density assumptions for conversion of geodesic glacier volume change to mass change. cryosphere 7877-887 (2013).

  • 29

    Fountain, A. G. & Vecchia, A. How many piles is needed to measure the mass balance of a glacier? Geogr. Ann. Ser. A 81563-573 (1999).

  • 30

    Lliboutry, L. Multivariate statistical analysis of annual glacier balances. J. Glaciol. 13371-392 (1974).

  • 31.

    Cox, L. H. & March, R. S. Comparison of geodetic and glaciological mass balance techniques, Glacier Gulkana, Alaska, United States of America. J. Glaciol. 50, 363-370 (2004).

  • 32

    Thibert, E., White, R., Vincent, C. and Eckert, N. Measurements of glaciological and volumetric mass balance: analysis of errors over 51 years for Glacier de Sarennes, French Alps. J. Glaciol. 54522-532 (2008).

  • 33

    Huss, M., Bauder, A. and Funk, M. Homogenization of time series of long-term mass balance. Ann. Glaciol. 50198-206 (2009).

  • 34

    Andreassen, L.M., Elvehøy, H., Kjøllmoen, B. and Engeset, R. V. Reanalysis of a long-term series of glaciological and geodetic mass balance of 10 Norwegian glaciers. cryosphere ten535-552 (2016).

  • 35

    Thomson, L., Zemp, M., Copland, L., Cogley, J.G. and Ecclestone, M. A. Comparison of geodetic and glaciological mass balances of White Glacier, Axel Heiberg Island, Canada. J. Glaciol. 63, 55-66 (2016).

  • 36

    Wang, P., Li, Z., Li, H., Wang, W. and Yao, H. Comparison of glaciological and geodesic mass balance at Urumqi Glacier No. 1, Tian Shan, Central Asia. Global Planet. Change 114, 14-22 (2014).

  • 37

    Basantes-Serrano, R. et al. Slight mass loss revealed by the reanalysis of observations of mass balance of glaciers on Antisana Glaciar 15α (internal tropical regions) during the period 1995-2012. J. Glaciol. 62, 124-136 (2016).

  • 38

    Fischer, M., Huss, M. and Hoelzle, M. Altitude of the surface and mass changes of all Swiss glaciers, 1980-2010. cryosphere 9525-540 (2015).

  • 39

    Vijay, S. & Braun, M. Rate of change in altitude of Lahaul-Spiti glaciers (western Himalayas, India) in 2000-2012 and 2012-2013. Remote Sens. 81038 (2016).

  • 40

    The Bris, R. & Paul, F. Glacier – specific elevation changes in parts of western Alaska. Ann. Glaciol. 56, 184-192 (2015).

  • 41

    Falaschi, D., Bravo, C., Masiokas, M., Villalba, R. and Rivera, A. First inventory of glaciers and recent changes in the glacier zone in the Monte San Lorenzo region (47 ° S), south from Patagonia, South America. Arct. Antarct. Alp. Res. 45, 19-28 (2013).

  • 42

    C. Larsen, R. J. Motyka, A. A. Arendt, A. Echelmeyer, and P. Geissler. E. Glacier moving in southeastern Alaska and northwestern British Columbia and contributing to the rise in sea level. J. Geophys. Res. 112, F01007 (2007).

  • 43

    L. Girod, C. Nuth, A. Kääb, MR W. McNabb and O. MMASTER: Improvement of DEM ASTER for monitoring altitude change. Remote Sens. 9704 (2017).

  • 44

    Nuth, C. & Kääb, A. Corrections of co-registration and bias of satellite elevation data sets to quantify the change in glacier thickness. cryosphere 5, 271-290 (2011).

  • 45

    Her and. DEM 8 meters high mountain in Asia from cross-track optical imagery (v.1.0) (NASA National Snow and Ice Center (NSIDS DAAC) Distributed Active Archives Center, 2017) https://doi.org/10.5067/GSACB044M4PK.

  • 46

    McNabb, R., Nuth, C., Kääb, A. and Girod, L. Sensitivity of estimation of the mass balance of geodetic glaciers to the interpolation of voids in the DEM. cryosphere 13, 895-910 https://doi.org/10.5194/tc-13-895-2019 (2019).

  • 47

    Korsgaard, N.J. et al. Digital elevation model and orthophotographs of Greenland after aerial photographs from 1978 to 1987. Sci. The data 3160032 (2016).

  • 48.

    Pfeffer, W. T. et al. The inventory of glaciers Randolph: a complete inventory of glaciers. J. Glaciol. 60537-552 (2014).

  • 49

    GLIMS Glacier Database (GLIMS and National Snow and Ice Data Center (NSIDC), 2005) https://doi.org/10.7265/N5V98602.

  • 50

    Rastner, P. et al. First complete inventory of glaciers and ice caps in Greenland. cryosphere 6, 1483-1495 (2012).

  • 51.

    Huber, J., Cook, J., Paul, F. and Zemp, M. Complete Inventory of Antarctic Peninsula Glaciers, based on Landsat 7 images from 2000 to 2002 and other pre-existing data sets. Earth Syst. Sci. The data 9115-131 (2017).

  • 52

    Fountain, A.G., Basagic, H.J., IV and Niebuhr, S. Glaciers in equilibrium, McMurdo Dry Valleys, Antarctica. J. Glaciol. 62976-989 (2016).

  • 53

    Mernild, S.H. et al. Glacial changes in the circumpolar and subarctic Arctic from the mid-1980s to the late 2000s. Geogr. Tidsskr. J. Geogr. 115, 39-56 (2015).

  • 54

    Hannesdóttir, H., H. Björnsson, F. Pálsson, Aðalgeirsdóttir, G. & Guðmundsson, S. Changes in the Vatnajökull Ice Cap, Iceland, between ~ 1890 and 2010. cryosphere 9565-585 (2015).

  • 55

    Khromova, T. et al. Impacts of climate change on mountain glaciers in Russia. Reg. About. Change 18, 1-19 (2019).

  • 56.

    Global Terrestrial Network for Glaciers GTN-G Glacier Regions (GTN-G, 2017) https://doi.org/10.5904/gtng-glacreg-2017-07.

  • 57

    Radić, V. & Hock, R. Regional and global volumes of glaciers derived from the statistical scaling of inventory data. J. Geophys. Res. 115, F001373 (2010).

  • 58

    Dyurgerov, M. B. Mass balance and glacier regime: measurement and analysis data. Occasional Paper No. 55 (Arctic and Alpine Research Institute, Colorado Univ., 2002).

  • 59

    Letréguilly, A. and Reynaud, L. Spatial and temporal distribution of mass balance of glaciers in the northern hemisphere. Arct. Alp. Res. 22, 43-50 (1990).

  • 60.

    Cogley, J. G. and Adams, W. P. Mass balance of glaciers other than ice sheets. J. Glaciol. 44315-325 (1998).

  • 61.

    Krzywinski, M. and Altman, N. Analysis of variance and blocking. Nat. The methods 11699-700 (2014).

  • 62

    Eckert, N., H. Baya, E. Vincent and Vincent. C. Time signal extraction from a series of winter and summer mass balances: application to a six – decade record at the Sarennes Glacier, French Alps. J. Glaciol. 57134-150 (2011).

  • 63.

    Puga, J. L., Statistics of Krzywinski and Altman, N. Bayesian. Nat. The methods 12377-378 (2015); corrigendum 121098 (2015).

  • 64.

    Cogley, J. G. Area of ​​the ocean. Mar Geod. 35379-388 (2012).

  • 65.

    GCOSGlobal Climate Observing System: Implementation Needs (World Meteorological Organization, 2016).

  • [ad_2]

    Source link