Forearc carbon sink reduces long-term volatile recycling in the mantle



[ad_1]

  • 1.

    Kelemen, P. B. & Manning, C. E. Reassessing carbon fluxes in subduction zones, which is falling mostly rises. Proc. Natl Acad. Sci. United States 112, E3997 – E4006 (2015).

  • 2

    Shaw, A.M., Hilton, D. R., Fischer, T. P., Walker, J. A. & Alvarado, G. E. Contrast gender relations in Nicaragua and Costa Rica: information on carbon cycling in subduction zones. Earth. Sci. Lett. 214499-513 (2003).

  • 3

    Füri, E. et al. Carbon release from submarine seeps in the Costa Rica bow: implications for the volatile cycle at the converging margin of Central America. Geochem. Geophysics Geosyst. 11, Q04S21 (2010).

  • 4

    Schwarzenbach, E.M., Früh-Green, G.L., Bernasconi, S.M., Alt, J.C. & Plas, A. Serpentinization and carbon sequestration: a study of two ancient hydrothermal systems hosted with peridotite. Chem. Geol. 351, 115-133 (2013).

  • 5

    McCollom, T.M. & Seewald, J.S. Serpentinites, hydrogen and life. elements 9, 129-134 (2013).

  • 6

    Hilton, D.R., Fischer, T.P. and Marty, B. Rare gases and volatile recycling in subduction zones. Rev. Mineral. Geochem. 47319-370 (2002).

  • 7.

    Leeuw, G.A.M., Hilton, D.R., Fischer, T. P. & Walker, J. A. The He-CO.2 Isotopic characteristics and relative abundance of geothermal fluids in El Salvador and Honduras: new constraints on the volatile mass balance of the volcanic arc of Central America. Earth. Sci. Lett. 258, 132-146 (2007).

  • 8

    from Moor, J. M. et al. New sulfur and carbon degassing inventory for the volcanic arc of southern Central America: the importance of accurate time series of data and possible tectonic processes responsible for temporal variations in volatile emissions at the scale of the arc. Geochem. Geophysics Geosyst. 184437-4468 (2017).

  • 9

    Fryer, P., Ambos, E.L. & Hussong, D.M. Origin and location of seamounts Mariana. Geology 13774-777 (1985).

  • ten.

    Brown, K. M. The nature and hydrogeological importance of diapirs and mud diatremes for accretion systems. J. Geophys. Res. Solid Earth 958969-8982 (1990).

  • 11

    Naif, S., K., K., Constable, S. & Evans, R. L. Water-rich curvature flaws in the pit of Central America. Geochem. Geophysics Geosyst. 162582-2597 (2015).

  • 12

    Gorman, P.J., Kerrick, D.M. and Connolly, J.A. D. Modeling metamorphic decarbonation in an open system of subducting slabs. Geochem. Geophysics Geosyst. 7Q04007 (2006).

  • 13

    Vaca, L., Alvarado, A. and Corrales, R. Deposition of calcite at the Miravalles geothermal field in Costa Rica. geothermal 18305-312 (1989).

  • 14

    Corrigan, J., Mann, P. and Ingle, J.C. Jr. Response of the forearm to the subduction of the Cocos Dorsal, Panama – Costa Rica. Geol. Soc. A m. Taurus. 102628-652 (1990).

  • 15

    Pacton, M. et al. Viruses as new agents of organomineralization in the geological archives. Nat. Common. 54298 (2014).

  • 16

    Zhu, T. & Dittrich, M. Precipitations of carbonates through microbial activities in the wild and their potential in biotechnology: review. Front. Bioeng. Biotechnol. 4https://doi.org/10.3389/fbioe.2016.00004 (2016).

  • 17

    Berg, I. A. Ecological aspects of the distribution of different autotrophic COs2 fixing ways. Appl. About. Microbiol. 77, 1925-1936 (2011).

  • 18

    Colwell, F. S. & D'Hondt, S. Nature and Extent of the Deep Biosphere. Rev. Mineral. Geochem. 75547-574 (2013).

  • 19

    Emerson, J.B., Thomas, B.C., Alvarez, W. & Banfield, J. F. Metagenomic analysis of an underground microbial community with high carbon dioxide content, populated with chemiolithoautotrophs, bacteria and phylas candidate archaea. About. Microbiol. 181686-1703 (2016).

  • 20

    Harris, R. N. & Wang, K. Thermal models of the trench of Central America in the Nicoya Peninsula, Costa Rica. Geophysics Res. Lett. 29, 2010 (2002).

  • 21

    Whiticar, M. J. Systematic isotopes of carbon and hydrogen in the formation of bacteria and the oxidation of methane. Chem. Geol. 161291-314 (1999).

  • 22

    McCollom, T. M. and Seewald, J. S. Abiotic synthesis of organic compounds in deep hydrothermal environments. Chem. Tower. 107, 382-401 (2007).

  • 23

    Ozima, M. & Podosek, F. A. Geochemistry of noble gases (Cambridge Univ Press, 2002).

  • 24

    Hilton, D. R. The systematics of isotopes of helium and carbon from a continental geothermal system: results of monitoring studies conducted in the Long Valley Caldera (California, United States of America). Chem. Geol. 127269-295 (1996).

  • 25

    Mook, W.G., Bommerson, J.C. and Stavermann, W.H. Isotopic fractionation of carbon between dissolved bicarbonate and gaseous carbon dioxide. Earth. Sci. Lett. 22169-176 (1974).

  • 26

    Vogel, J.C., Grootes, P.M. and Mook, W.G. Isotopic fractionation between gaseous and dissolved carbon dioxide. Z. Phys. A 230225-238 (1970).

  • 27

    Barry, P.H. et al. Systematic isotopes of helium and carbon in cold "mazuku" CO2 vents and gases and hydrothermal fluids from the Rungwe Volcanic Province, southern Tanzania. Chem. Geol. 339141-156 (2013).

  • 28

    Audet, P. & Schwartz, S. Y. Hydrological control of forearm strength and seismicity in the subduction zone of Costa Rica. Nat. Geosci. 6852-855 (2013).

  • 29

    Wheat, C. G. & Fisher, A. T. Low-temperature massive hydrothermal flow of a basaltic outcrop on the seabed of the 23 Ma Cocos plate: chemical constraints and implications. Geochem. Geophysics Geosyst. 9, Q12O14 (2008).

  • 30

    Aiuppa, A. et al. Gas measurements from the Costa Rica – Nicaragua volcanic segment suggest possible variations along the arc in volcanic gas chemistry. Earth. Sci. Lett. 407134-147 (2014).

  • 31.

    Alt, J.C. et al. Underground structure of a submarine hydrothermal system in the oceanic crust formed at East Pacific Rise, site ODP / IODP 1256. Geochem. Geophysics Geosyst. 11Q10010 (2010).

  • 32

    Carr, MJ, Feigenson, MD and Bennett, EA Incompatible element and isotopic evidence of tectonic control of mixing at the source and extraction in the molten state along the arc of Central America. Contrib. Mineral. gasoline. 105369-380 (1990).

  • 33

    Leeman, W.P., Carr, M.J. & Morris, J.D. Boron Geochemistry of the Central American Volcanic Arc: Constraints on the Genesis of Subduction-related Magmas. GEOCHIM. Cosmochim. Acta 58149-168 (1994).

  • 34

    Zimmer, M. M. et al. Nitrogen systematics and gas flow from subduction zones: information from volatile arches in Costa Rica. Geochem. Geophysics Geosyst. 5, Q05J11 (2004).

  • 35

    Hilton, D.R. et al. Monitoring temporal and spatial variations in the characteristics of helium and carbon dioxide fumaroles on Poás and Turrialba volcanoes in Costa Rica (2001-2009). Geochem. J. 44431-440 (2010).

  • 36

    Lee, H. et al. Nitrogen recycling in the subduction zone of Costa Rica: role of the incoming plate structure. Sci. Representative. 713933 (2017).

  • 37

    House, C.H., Schopf, J.W. & Stetter, K.O. Isotopic fractionation of carbon by Archaeans and other thermophilic prokaryotes. Org. Geochem. 34, 345-356 (2003).

  • 38

    Alvarado, G. E. and Vargas, A. G. History of the discovery and exploitation of thermal water in Costa Rica. Rev. Geol. A m. Hundred. 57, 55-84 (2017).

  • 39

    Marty, B. & Dauphas, N. The nitrogen recording of the crust – mantle interaction and convection of the Archean mantle at present. Earth. Sci. Lett. 206397-410 (2003).

  • 40

    Hirschmann, M. M. & Dasgupta, R. H / C ratios deep and deep reservoirs of the Earth and consequences for unstable cycles of the deep Earth. Chem. Geol. 262, 4-16 (2009).

  • 41

    Jelen, B.I., Giovannelli, D. & Falkowski, P.G. The role of microbial electron transfer in the coevolution of the biosphere and the geosphere. Annu. Rev. Microbiol. 70, 45-62 (2016).

  • 42

    Li, Z.H., Xu, Z. Q. and Gerya, T. V. Flat Subduction vs. Strong Subduction: Contrasting modes for the formation and exhumation of rocks from high to ultra high pressure in continental collision zones. Earth. Sci. Lett. 301, 65-77 (2011).

  • 43

    Smithies, R.H., Champion, D.C. & Cassidy, K.F. Formation of the Early Archean continental crust of the Earth. Precambr. Res. 12789-101 (2003).

  • 44

    Abbott, D., Drury, R. and Smith, W. H. F. Flat to strong transition in the style of subduction. Geology 22937-940 (1994).

  • 45

    Holland, H. D. Volcanic gases, black smokers and large event of oxidation. GEOCHIM. Cosmochim. Acta 663811 to 3826 (2002).

  • 46

    Kump, L.R., Kasting, J.F. & Barley, M. E. Increased atmospheric oxygen and Archean mantle "upside down". Geochem. Geophysics Geosyst. 22000GC000114 (2001).

  • 47

    Och, L. M. and Shields-Zhou, G. A. The Neoproterozoic Oxygenation Event: Environmental Disturbances and Biogeochemical Cycle. Earth Sci. Tower. 110, 26-57 (2012).

  • 48.

    Bird, P. An updated digital model of plate boundaries. Geochem. Geophysics Geosyst. 41027 (2003).

  • 49

    Protti, M., Gündel, F. & McNally, K. Geometry of the Wadati – Benioff Zone in South Central America and its Tectonic Significance: Results of a High Resolution Local Seismographic Network. Phys. Earth. Enter. 84271-287 (1994).

  • 50

    Ryan, W.B.F. et al. Global synthesis of multi-resolution topography. Geochem. Geophysics Geosyst. ten, Q03014 (2009).

  • 51.

    Giggenbach, W. F. & Goguel, R. L. Methods of collecting and analyzing samples of water and geothermal and volcanic gases. CD Report 2387 53 (Department of Scientific and Industrial Research (Chemistry Division), 1989).

  • 52

    Trull, T. Influx and age constraints on the explanation of cosmic dust recycled for 3He/4It has relationships with volcanoes of hot spots. Geochemistry of noble gases. Cosmochim. 77-88 (1994).

  • 53

    Kulongoski, J. T. and Hilton, D. R. Quadrupole-based mass spectrometry system for determining the abundance of noble gases in fluids. Geochem. Geophysics Geosyst. 3, 1-10 (2002).

  • 54

    Barry, P.H. et al. Rare gas solubility models of the hydrocarbon feed mechanism in the gas field of Sleipner Vest. GEOCHIM. Cosmochim. Acta 194291-309 (2016).

  • 55

    Braun, S. et al. Cellular content of biomolecules in microbial communities of the subsoil. GEOCHIM. Cosmochim. Acta 188, 330-351 (2016).

  • 56.

    Giovannelli, D. et al. Diversity and distribution of prokaryotes in a field of shoal markings in shallow waters. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.00941 (2016).

  • 57

    McMahon, S. & Parnell, J. Weigh the deep continental biosphere. FEMS Microbiol. School. 87113-120 (2014).

  • 58

    Sano, Y. & Marty, B. Origin of carbon in fumarolic gas from the islands. Chem. Geol. 119265-274 (1995).

  • 59

    Snyder, G., Poreda, R., Hunt, A. and Fehn, U. Regional Variations in Volatile Composition: Isotopic Evidence of Carbonate Recycling in the Volcanic Arc of Central America. Geochem. Geophysics Geosyst. 21057 (2001).

  • 60.

    Snyder, G., Poreda R., U. Fehn and Hunt, A. Geothermal fields of Central America: influence of the subduction process on its volatile composition. Geol. Mag. Central Am. 30137-148 (2004).

  • 61.

    Wehrmann, H., K. Hoernle, M. Portnyagin, M. Wiedenbeck, M. and Heydolph, K. Volcanic CO.2 production in the subduction zone of Central America deducted from the melt inclusions in olivine crystals of mafic tephras. Geochem. Geophysics Geosyst. 12, Q06003 (2011).

  • 62

    from Moor, J. M. et al. Turmoil at Turrialba volcano (Costa Rica): degassing and eruption process deduced from high frequency gas monitoring. J. Geophys. Res. Solid Earth 1215761-5775 (2016).

  • 63.

    Dawson, P., Chouet, B. and Pitt, A. Tomographic image of a seismically active volcano: Mammoth Mountain, California. J. Geophys. Res. Solid Earth 121, 114-133 (2016).

  • 64.

    Mason, E., Edmonds, M. and Turchyn, A. V. Remobilization of carbon in the Earth's crust could dominate volcanic arc emissions. Science 357290-294 (2017).

  • 65.

    Chiodini, G., Pappalardo, L., Aiuppa, A. and Caliro, S. The geological CO2 degassing story of a long life caldera. Geology 43767-770 (2015).

  • 66.

    Berrangé, J. P. & Thorpe, R. S. Geology, geochemistry and location of the Nicoya Cretaceous-Tertiary ophiolitic complex of the Osa Peninsula, southern Costa Rica. Tectonophysics 147193-220 (1988).

  • 67.

    Giggenbach, W. F. Relative importance of thermodynamic and kinetic processes in the management of the chemical and isotopic composition of carbon dioxide in sedimentary basins with high heat flux. GEOCHIM. Cosmochim. Acta 613763-3785 (1997).

  • 68.

    Kuijpers, E. P. Geological history of the Nicoya ophthalmic complex, Costa Rica, and its geotectonic importance. Tectonophysics 68233-255 (1980).

  • 69

    Schwarzenbach, E.M. et al. Sources and carbon cycle in hosted continental alkaline sources of serpentinite in the Voltri Massif, Italy. Lithographs 177, 226-244 (2013).

  • 70.

    Torgersen, T. Degassing flux of terrestrial helium and atmospheric balance of helium: implications for continental crust degassing processes. Chem. Geol. Isotope Geosci. Sect. 79, 1-14 (1989).

  • 71.

    Walther, CHE, Flueh, ER, Ranero, CR, Von Huene, R. & Strauch, W. Crustal structure on the Pacific margin of Nicaragua: evidence of an ophiolitic basement and a shallow mantle ribbon . Geophysics J. Int. 141759 to 777 (2000).

  • 72.

    Gazel, E., Denyer, P. and Baumgartner, P. O. Magmatic and geotectonic significance of the Santa Elena Peninsula, Costa Rica. Geol. Acta 4, 0193-202 (2006).

  • 73.

    Gazel, E. et al. Feather – subduction interaction in South Central America: mantle rise and melting of the plates. Lithographs 121117-134 (2011).

  • 74.

    Gazel, E. et al. Continental crust generated in oceanic arcs. Nat. Geosci. 8321 (2015).

  • 75.

    Madrigal, P. et al. Fusion zone in the lithospheric mantle preserved in the ophiolite of Santa Elena, Costa Rica. Lithographs 230, 189-205 (2015).

  • 76.

    Madrigal, P., Gazel, E., Flores, K, E., Bizimis, M. and Jicha, B. Recording of massive lifts in the greater Pacific Province at low shear rates. Nat. Common. 713309 (2016).

  • 77.

    Li, L. & Bebout, G. E. Geochemistry of Carbon and Sediment Nitrogen in the Convergent Margin of Central America: Information on subduction entry fluxes, diagenesis and paleoproductivity. J. Geophys. Res. Solid Earth 110B11202 (2005).

  • 78.

    Holloway, J.R. and Blank, J. G. Application of experimental results to COH species in natural melts. Rev. Mineral. 30, 187-230 (1994).

  • 79.

    Ohmoto, H. & Rye, R. O. in Geochemistry of hydrothermal deposits (Barnes, H., ed.) 509-567 (1979).

  • 80.

    from Moor, J. M. et al. Precursors of short-lived volcanic gases with phreatic eruptions: information from the volcano Poás, Costa Rica. Earth. Sci. Lett. 442, 218-227 (2016).

  • 81.

    Kimura, G. et al. (eds) in Record of the Ocean Drilling Program, Initial Reports Vol. 170 initial reports, Costa Rica's growing corner (ODP, 1997).

  • 82.

    Barckhausen, U., Ranero, C.R., Huene, R.V., Cande, S.C. & Roeser, H. A. Revisions of tectonic boundaries in the Cocos plate off Costa Rica: implications for convergent margin segmentation and for plate tectonic models. J. Geophys. Res. Solid Earth 10619207-19220 (2001).

  • 83.

    DeMets, C. A new estimate of the movement of the Caribbean Cocos plate: implications for sliding along the Central American volcanic arc. Geophysics Res. Lett. 284043-4046 (2001).

  • 84.

    Patino, L.C., Carr, M.J. & Feigenson, M.D. Local and regional variations of the arctic lavas controlled by variations in the intake of subducted sediments. Contrib. Mineral. gasoline. 138265-283 (2000).

  • 85.

    Von Huene, R., Langseth, M., Nasu, N. and Okada, H. Abstract of the Cenozoic tectonic history along the IPOD Japan Trench transect. Geol. Soc. A m. Taurus. 93829-846 (1982).

  • 86.

    Parkes, R.J., Cragg, B.A., Fry, J.C., Herbert, R.A. & Wimpenny, J.W.T. Bacterial biomass and activity in the deep sedimentary layers of the Peruvian margin. Phil Trans. R. Soc. Lond. A 331139-153 (1990).

  • 87.

    Biddle, J.F. et al. Heterotrophic archaea dominate the submarine sediment ecosystems off Peru. Proc. Natl Acad. Sci. United States 103, 3846-3851 (2006).

  • 88.

    Vannucchi, P. & Tobin, H. Deformation structures and implications for fluid flow in the convergent margin of Costa Rica, ODP sites 1040 and 1043, step 170. J. Struct. Geol. 221087-1103 (2000).

  • 89.

    Spinelli, G. A. and Underwood, M. B. Character of sediments entering the subduction zone of Costa Rica: implications for the distribution of water along the plate interface. Island of the bow 13432-451 (2004).

  • 90.

    Ranero, C.R. et al. Hydrogeological system of converging margins of erosion and its influence on interplate tectonics and seismogenesis. Geochem. Geophysics Geosyst. 9, Q03S04 (2008).

  • 91.

    Spinelli, G.A. & Saffer, D.M. In Costa Rica, parallel variations of sediment dewatering on the Nicoya margin, related to the rising limit of seismicity. Geophysics Res. Lett. 31L04613 (2004).

  • 92.

    Lloyd, K.G. et al. Effects of dissolved sulphide, pH and temperature on the growth and survival of marine hyperthermophilic archaea. Appl. About. Microbiol. 716383 to 6387 (2005).

  • 93.

    Edgcomb, V.P. et al. Survival and growth of two heterotrophic hydrothermal archaea, Pyrocoque strain GB-D and Thermococcus fumicolansat low pH and high sulphide concentrations in combination with high temperature and pressure regimes. extremophiles 11329-342 (2007).

  • 94.

    Marlow, J.J. et al. Carbonated methanotrophy is an unrecognized methane sink in the deep seabed. Nat. Common. 55094 (2014).

  • 95.

    Boetius, A. & Wenzhöfer, F. Oxygen consumption of ocean floors fed with methane from cold seeps. Nat. Geosci. 6725 (2013).

  • 96.

    Hensen, C., K. Wallmann, M. Schmidt, Ranero, C.R. & Suess, E. Fluid expulsion related to the extrusion of mud off Costa Rica – a window on the slab being subducted. Geology 32201-204 (2004).

  • 97.

    Colwell, F.S. et al. Estimates of biogenic methane production rates in deep marine sediments at Hydrate Ridge, Margin Cascadia. Appl. About. Microbiol. 74, 3444-3452 (2008).

  • 98.

    Sánchez-Murillo, R. et al. Geochemical evidence for active tropical serpentinization in the Ophiolite of Santa Elena, Costa Rica: an analogue of an ancient wetland? Geochem. Geophysics Geosyst. 15, 1783-1800 (2014).

  • 99

    Crespo-Medina, M. et al. Understanding of environmental controls on microbial communities in a continental serpentinite aquifer using a microcosm approach. Front. Microbiol. 5, 604 (2014).

  • [ad_2]

    Source link