Immuno-evasive human islet-type organoids improve diabetes



[ad_1]

  • 1.

    Yoshihara, E. et al. ERRγ is required for the metabolic maturation of therapeutically functional glucose-sensitive β cells. Cell Metab. 23, 622–634 (2016).

    CAS PubMed PubMed Central Google Scholar

  • 2.

    Hrvatin, S. et al. Differentiated human stem cells look like fetal and non-adult β cells. Proc. Natl Acad. Sci. United States 111, 3038-3043 (2014).

    ADS CAS PubMed Google Scholar

  • 3.

    Rezania, A. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32, 1121-1133 (2014).

    CAS PubMed Google Scholar

  • 4.

    Pagliuca, FW et al. Generation of functional human pancreatic β cells in vitro. Cell 159, 428–439 (2014).

    CAS PubMed PubMed Central Google Scholar

  • 5.

    Kieffer, TJ Close on the Mass Production of Mature Human Beta Cells. Cell stem cell 18, 699–702 (2016).

    CAS PubMed Google Scholar

  • 6.

    Liu, JS & Hebrok, M. All mixed up: role definition for β cell subtypes in mature islets. Genes Dev. 31, 228-240 (2017).

    CAS PubMed PubMed Central Google Scholar

  • 7.

    Takebe, T. et al. Vascularized and functional human liver from an organ bud transplant derived from iPSC. Nature 499, 481-484 (2013).

    ADS CAS PubMed Google Scholar

  • 8.

    Asai, A. et al. Paracrine signals regulate the maturation of human hepatic organoids from induced pluripotent stem cells. Development 144, 1056-1064 (2017).

    CAS PubMed PubMed Central Google Scholar

  • 9.

    Bader, E. et al. Identification of proliferative and mature β cells in the islets of Langerhans. Nature 535, 430–434 (2016).

    ADS CAS PubMed Google Scholar

  • ten.

    van der Meulen, T. et al. Urocortin3 is involved in the somatostatin-dependent negative feedback control of insulin secretion. Night. With. 21, 769–776 (2015).

    PubMed PubMed Central Google Scholar

  • 11.

    Blum, B. et al. The functional maturation of beta cells is marked by an increase in the glucose threshold and by the expression of urocortin 3. Nat. Biotechnol. 30, 261-264 (2012).

    CAS PubMed PubMed Central Google Scholar

  • 12.

    van der Meulen, T. et al. Urocortin 3 labels the alpha and beta pancreatic cells of the mature human and embryonic pancreas. PLoS ONE 7, e52181 (2012).

    ADS PubMed PubMed Central Google Scholar

  • 13.

    Prentki, M., Matschinsky, FM & Madiraju, SR Metabolic signaling in fuel-induced insulin secretion. Cell Metab. 18, 162-185 (2013).

    CAS PubMed Google Scholar

  • 14.

    Huang, SM et al. Inhibition of tankyrase stabilizes the axin and antagonizes Wnt signaling. Nature 461, 614–620 (2009).

    ADS CAS PubMed Google Scholar

  • 15.

    Baas, M. et al. TGFβ-dependent expression of PD-1 and PD-L1 control CD8+ T lymphocyte anergy in transplantation tolerance. eLife 5, e08133 (2016).

    PubMed PubMed Central Google Scholar

  • 16.

    Martinov, T., Spanier, JA, Pauken, KE & Fife, BT PD-1 regulation mediated by the islet-specific CD4 pathway+ T cell subsets in autoimmune diabetes. Immunoendocrinology 3, e1164 (2016).

    PubMed Google Scholar

  • 17.

    Keir, ME et al. Tissue expression of PD-L1 mediates tolerance of peripheral T cells. J. Exp. Med. 203, 883–895 (2006).

    CAS PubMed PubMed Central Google Scholar

  • 18.

    Ansari, MJ et al. The programmed death pathway-1 (PD-1) regulates autoimmune diabetes in non-obese diabetic (NOD) mice. J. Exp. Med. 198, 63–69 (2003).

    CAS PubMed PubMed Central Google Scholar

  • 19.

    Ma, D. et al. A deficiency of PD-L1 in the islets reduces the survival of allografts in mice. PLoS ONE 11, e0152087 (2016).

    PubMed PubMed Central Google Scholar

  • 20.

    Rui, J. et al. Β cells that resist immunological attack develop during the progression of autoimmune diabetes in NOD mice. Cell Metab. 25, 727–738 (2017).

    CAS PubMed PubMed Central Google Scholar

  • 21.

    Wang, CJ et al. Protective role of programmed ligand 1 (PD-L1) death in non-obese diabetic mice: the paradox in transgenic models. Diabetes 57, 1861-1869 (2008).

    CAS PubMed PubMed Central Google Scholar

  • 22.

    Colli, ML et al. PDL1 is expressed in the islets of people with type 1 diabetes and is upregulated by α and γ interferons via IRF1 induction. eBioMedicine 36, 367–375 (2018).

    PubMed PubMed Central Google Scholar

  • 23.

    Osum, KC et al. Interferon-gamma causes programmed expression of death ligand 1 on islet β cells to limit T cell function during autoimmune diabetes. Sci. Representative. 8, 8295 (2018).

    ADS PubMed PubMed Central Google Scholar

  • 24.

    Eizirik, DL & Mandrup-Poulsen, T. A choice of death – immune-mediated beta-cell apoptosis signal transduction. Diabetology 44, 2115-2133 (2001).

    CAS PubMed Google Scholar

  • 25.

    Russ, HA et al. Controlled induction of human pancreatic progenitors produces functional beta-type cells in vitro. EMBO J. 34, 1759–1772 (2015).

    CAS PubMed PubMed Central Google Scholar

  • 26.

    Nair, GG et al. Recapitulation of the pooling of cultured endocrine cells promotes maturation of β cells derived from human stem cells. Nat. Cellular biol. 21, 263-274 (2019).

    CAS PubMed PubMed Central Google Scholar

  • 27.

    Sneddon, JB et al. Stem cell therapies for treating diabetes: progress and challenges ahead. Cell stem cell 22, 810–823 (2018).

    CAS PubMed PubMed Central Google Scholar

  • 28.

    Zhou, Q. & Melton, DA Regeneration of the pancreas. Nature 557, 351–358 (2018).

    ADS CAS PubMed PubMed Central Google Scholar

  • 29.

    Turner, M. et al. Towards the development of a world bank of induced pluripotent stem cells. Cell stem cell 13, 382-384 (2013).

    CAS PubMed Google Scholar

  • 30.

    Morizane, A. et al. MHC pairing enhances the transplantation of iPSC-derived neurons in non-human primates. Nat. Common. 8, 385 (2017).

    ADS PubMed PubMed Central Google Scholar

  • 31.

    Wei, Z. et al. Vitamin D changes BAF complexes to protect β cells. Nat. Common. 173, 1135-1149 (2018).

    Google Scholar CAS

  • 32.

    Yoshihara, E. et al. Disruption of TBP-2 improves sensitivity and insulin secretion without affecting obesity. Nat. Common. 1, 127 (2010).

    ADS PubMed PubMed Central Google Scholar

  • 33.

    Buenrostro, JD, Wu, B., Chang, HY & Greenleaf, WJ ATAC-seq: a method for testing the accessibility of chromatin at the genome scale. Curr. Protoc. Mol. Biol. 109, 21.29.1-21.29.9 (2015).

    Google Scholar

  • 34.

    Heinz, S. et al. Simple combinations of lineage-determining transcription factors cis– regulatory elements required for the identities of macrophages and B cells. Mol. Cell 38, 576-589 (2010).

    CAS PubMed PubMed Central Google Scholar

  • 35.

    Dobin, A. et al. STAR: ultra-fast RNA-seq universal aligner. Bioinformatics 29, 15–21 (2013).

    Google Scholar CAS

  • 36.

    Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31, 46–53 (2013).

    CAS PubMed Google Scholar

  • 37.

    Roberts, A., Pimentel, H., Trapnell, C. & Pachter, L. Identification of novel transcripts in annotated genomes using RNA-seq. Bioinformatics 27, 2325-2329 (2011).

    CAS PubMed Google Scholar

  • 38.

    van Dijk, D. et al. Retrieving gene interactions from unicellular data using data diffusion. Cell 174, 716–729 (2018).

    PubMed PubMed Central Google Scholar

  • 39.

    Macosko, EZ et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    CAS PubMed PubMed Central Google Scholar

  • 40.

    Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integration of single-cell transcriptomic data under different conditions, technologies and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS PubMed PubMed Central Google Scholar

  • 41.

    Huang da. W. et al. Extract biological significance from large lists of genes with DAVID. Curr. Protoc. Bioinformatics Ch. 13, https://doi.org/10.1002/0471250953.bi1311s27 (2009).

  • 42.

    Walter, W., Sánchez-Cabo, F. & Ricote, M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics 31, 2912-2914 (2015).

    CAS PubMed Google Scholar

  • [ad_2]

    Source link