Middle Cambrian arthropod with chelicera and gills of proto-books



[ad_1]

  • 1.

    E. Schwager, A. Schönauer, D. Leite, D. Sharma, P. and McGregor, A. P. in Evolutionary biology of invertebrate development Flight. 3 (eds., Wanninger, A.) 99-139 (Springer, 2015).

  • 2

    Van Roy, P. et al. Burgess Shale Ordovician fauna. Nature 465215-218 (2010).

  • 3

    Haug, J. T., Waloszek D., Maas A, Liu, Y. and Haug, C. Functional morphology, ontogeny and evolution of mantis shrimp mantis predators in Cambrian. Paleontology 55, 369-399 (2012).

  • 4

    Liu, Y., T.H., J.T., Haug, C., Briggs, D.E.G. and Hou, X. A chelicerate larvae of 520 million years old. Nat. Common. 54440 (2014).

  • 5

    Aria, C., Caron, J.-B. & Gaines, R. A new large leanchoiliide of Burgess shales and influence of non-applicable states on the phylogeny of stem arthropods. Paleontology 58, 629-660 (2015).

  • 6

    Aria, C. & Caron, J.-B. Mandible convergence in an armored Cambrian stem chelicera. BMC Evol. Biol. 17261 (2017).

  • seven.

    Briggs, D. E.G. & Collins, D. A Middle Cambrian Chelicerate from Mount Stephen, British Columbia. Paleontology 31779-798 (1988).

  • 8

    Legg, D. A. Sanctacaris uncata: the oldest chelicérate (Arthropoda). Naturwissenschaften 1011065-1073 (2014).

  • 9

    Dunlop, J.A. & Lamsdell, J.C. Segmentation and tagmosis at Chelicerata. Arthropod Struct. dev. 46395-418 (2017).

  • ten.

    Ma, X., Hou, X., Edgecombe, G.D. and Strausfeld, N. J. Complex of brain and optic lobes in early Cambrian arthropod. Nature 490, 258-261 (2012).

  • 11

    Strausfeld, N.J. et al. Eyes of arthropods: early Cambrian fossil record and divergent evolution of visual systems. Arthropod Struct. dev. 45152-172 (2016).

  • 12

    Aria, C. & Caron, J.-B. Burgess Shale fossils illustrate the origin of the Mandibular Body Plan. Nature 545, 89-92 (2017).

  • 13

    Walcott, C. Geology and Paleontology of Cambrian II. Branchiopods, Malacostraca, Trilobita and Middle Cambrian Merostomata. Smithsonian Various Collections 57145-222 (1912).

  • 14

    Raymond, P. E. Notes on invertebrate fossils, with description of new species. Taurus. Mus. Comp. Zool. 55165-213 (1931).

  • 15

    Simonetta, A. M. and Delle Cave, L. Cambrian non-trilobite arthropods of Burgess shale in British Columbia. A study of their taxonomy of comparative morphology and their evolutionary significance. Palaeontography Italica 69, 1-37 (1975).

  • 16

    Robison, R. A. to The early evolution of metazoans and the importance of problematic taxa (report of an international symposium held at the University of Camerino from 27 to 31 March 1989)(eds Simonetta A.M. and Conway Morris, S.) 77-98 (Cambridge Univ Press, 1991).

  • 17

    Briggs, D.E.G., Lieberman, B.S., Hendricks, J.R., Halgedahl, S.L. and Jarrard, R.D. Middle Cambrian arthropods of Utah. J. Paleontol. 82, 238-254 (2008).

  • 18

    Zhang, X.L., Zhao, Y.L., Yang, R.D. & Shu, D. The Burgess Shale Arthropod Mollisonia (M. sinica new species); new occurrence of Middle Cambrian Kaili fauna from southwestern China. J. Paleontol. 761106-1108 (2002).

  • 19

    Caron, J.-B., Gaines, R.R., Aria, C., Mángano, M.G. and Streng, M. A new phyllopod bed assemblage of Burgess Shale in the Canadian Rockies. Nat. Common. 53210 (2014).

  • 20

    Vannier, J., Aria, C., Taylor, R. S. and Caron, J.-B. Waptia fieldensis Walcott, an arthropod mandibulated Middle Cambrian Burgess Shale. R. Soc. Open Sci. 5172206 (2018).

  • 21

    Sutton, M.D., Briggs, D.Eng., Siveter, D.J. and Orr, P.J.Arthropod Offacolus Kingi (Chelicerata) from Silurian of Herefordshire, England: Computer morphological reconstructions and phylogenetic affinities. Proc. R. Soc. B 2691195-1203 (2002).

  • 22

    Briggs, D.E.G. et al. The Silurian horseshoe crab illuminates the evolution of arthropod members. Proc. Natl Acad. Sci. United States 10915702-15705 (2012).

  • 23

    Farley, R. D. Development of book gills in embryos and in the first and second stages of horseshoe crab Limulus polyphemus L. (Chelicerata, Xiphosura). Arthropod Struct. dev. 39, 369-381 (2010).

  • 24

    Stein, M. Cephalic and appendicular morphology of the Cambrian arthropod Sidneyia inexpectans Walcott, 1911. Zool. Anz. 253164-178 (2013).

  • 25

    Zeng, H., Zhao, F., Yin, Z. and Zhu, M. Annexes to a trilobite of ancient Cambrian metadoxides from Yunnan, southwestern China, support the mandibular affinities of trilobites and artiopodes. Geol. Mag. 154, 1306-1328 (2017).

  • 26

    Lehmann, T. & Melzer, R. R. Limulus? – retinal axons and visual neuropils of Amblypygi (whip spiders). Front. Zool. 1552 (2018).

  • 27

    Edgecombe, G. D. Paleontology: the cause of jaws and claws. Curr. Biol. 27, R807 – R810 (2017).

  • 28

    Yang, J., Ortega-Hernandez, J., Lan, T., Hou, J. B. and Zhang, X. G. A predatory bivalve euarthropod of the Cambrian (stage 3) Xiaoshiba Lagerstatte, southern China. Sci. Representative. 627709 (2016).

  • 29

    Dunlop, J.A., Anderson, L.I. and Braddy, S.J. A new description of Chasmataspis laurencii Caster & Brooks, 1956 (Chelicerata: Chasmataspidida) of the Middle Ordovician of Tennessee, United States, with remarks on the phylogeny of chasmataspid. Trans. R. Soc. Edinb. Sci Earth. 94207-225 (2004).

  • 30

    Paterson, J.R., Edgecombe, G.D. and Lee, M.S. Y. Trilobite evolution rates limit the duration of the Cambrian explosion. Proc. Natl Acad. Sci. United States 116, 4394 to 4399 (2019).

  • 31.

    Aria, C. Review of the basics of standardization of the nomenclature of the highest taxonomic levels in arthropods. Geol. Mag. 1561463-1468 (2019).

  • 32

    van der Meijden, A., Langer, F., Boistel, R., Vagovic, P. and Heethoff, M. Functional morphology and bite performance of chelicerae raptorial camel spiders (Solifugae). J. Exp. Biol. 215, 3411 to 3418 (2012).

  • 33

    Gaines, R.R., Briggs, D.E. and Zhao, Y. Cambrian Burgess shale deposits share a common mode of fossilization. Geology 36755-758 (2008).

  • 34

    Ronquist, F. et al. MrBayes 3.2: Effective Bayesian phylogenetic inference and model choice in a large model space. Syst. Biol. 61539-542 (2012).

  • 35

    Lewis, P. O. A likelihood approach to estimate phylogeny from discrete morphological data. Syst. Biol. 50913-925 (2001).

  • [ad_2]

    Source link