Observation of double electron neutron capture in 124 Xe with XENON1T



[ad_1]

  • 1.

    Winter, R. G. Double K capture and single K capture with positron emission. Phys. Tower. 100142-144 (1955).

  • 2

    Gavrilyuk, Y. M. et al. Indications of 2ν2K capture in 78Kr. Phys. Rev. C 87035501 (2013).

  • 3

    Ratkevich, S. S. et al. Comparative study of the production of double K shells in the decomposition by capture of single and double electrons. Phys. Rev. C 96, 065502 (2017).

  • 4

    Meshik, A. P., Hohenberg, C. M., Pravdivtseva, O.V. & Kapusta, Y. S. Low disintegration of 130Ba and 132Ba: geochemical measurements. Phys. Rev. C 64035205 (2001).

  • 5

    Pujol, M., Marty, B., Burnard, P. and Philippot, P. Xenon in Archean baryta: weak weakening of the 130Ba, mass dependent isotope fractionation and implication for barite formation. GEOCHIM. Cosmochim. Acta 73, 6834-6846 (2009).

  • 6

    Gavriljuk, Y.M. et al. 2K-capture in 124Xe: Data processing results for an exposure of 37.7 kg per day. Phys. Part. nucl. 49563-568 (2018).

  • 7.

    Abe, K. et al. Enhanced search for dual electron capture with two neutrinos on 124Xe and 126Xe using particle identification in XMASS-I. Schedule. Theor Exp. Phys. 2018053D03 (2018).

  • 8

    Suhonen, J. Double beta decay of 124Xe investigated in the QRPA framework. J. Phys. G Nucl. Phys. 40075102 (2013).

  • 9

    Aunola, M. & Suhonen, J. Systematic study of beta and double beta decay in excited end states. Nucl. Phys. A 602133 to 166 (1996).

  • ten.

    Singh, S., Chandra, R., Rath, P. K., Raina, P. K. and Hirsch, J. G. Nuclear deformation and the two double-β-decay neutrinos in 124 126Xe, 128,130You 130,132Ba and 150Nd isotopes. EUR. Phys. J. A 33375-388 (2007).

  • 11

    Hirsch, M., K. Muto, Oda, T. and Klapdor-Kleingrothaus, H. V. Calculation of the nuclear structure of β+β+, β+CE / CE and CE / CE disintegration matrix elements. Z. Phys. A 347151-160 (1994).

  • 12

    Rumyantsev, O.A & Urin, M.H. The strength of the analog and giant resonances of Gamow – Tellerνββ disintegration rate. Phys. Lett. B 44351-57 (1998).

  • 13

    Pirinen, P. & Suhonen, J. Systematic approach of β and 2νββ mass decays A = 100-136 nuclei. Phys. Rev. C 91054309 (2015).

  • 14

    Coello Pérez, E.A., Menéndez, J. & Schwenk, A. Double electron neutrino capture on 124Xe based on an efficient theory and nuclear envelope model. Preprint at https://arxiv.org/abs/1809.04443 (2018).

  • 15

    Majorana, E. Theory of symmetry of electrons and positrons. Nuovo Cimento 14171-184 (1937).

  • 16

    Bernabeu, J., De Rujula, A. and Jarlskog, C. Neutron-free double electron capture, as a tool for measuring ν
    e Mass. Nucl. Phys. B 22315-28 (1983).

  • 17

    Sujkowski, Z. & Wycech, Neutron-Free Double Electron Capture: A tool for researching Majorana neutrinos. Phys. Rev. C 70052501 (2004).

  • 18

    Aprile, E. et al. Physical scope of the XENON1T experiment on dark matter. J. Cosmol. Astropart. Phys. 1604, 027 (2016).

  • 19

    Mount, B.J. et al. LUX-ZEPLIN (LZ). Report No. LBNL-1007256 (Lawrence Berkeley National Laboratory, 2017).

  • 20

    Aalbers, J. et al. DARWIN: towards the ultimate dark matter detector. J. Cosmol. Astropart. Phys. 1611, 017 (2016).

  • 21

    Modes of Doi, M. & Kotani, T. Neutrinoless of Double Beta Decay. Program. Theor Phys. 89139-159 (1993).

  • 22

    Cullen, D. RELAX Program: A code designed to calculate the atomic relaxation spectra of X-rays and electrons. Report No. UCRL-ID – 110438 (Lawrence Livermore National Laboratory, 1992).

  • 23

    Buchmüller, W., Peccei, R. and Yanagida, T. Leptogenesis as the origin of matter. Annu. Rev. Nucl. Part. Sci. 55311-355 (2005).

  • 24

    Nesterenko, D.A. et al. Beta-beta transformations in isobaric triplets with mass numbers A = 124, 130 and 136. Phys. Rev. C 86044313 (2012).

  • 25

    Aprile, E. et al. Dual Neutrino Electron Capture Search 124Xe with XENON100. Phys. Rev. C 95024605 (2017).

  • 26

    Aprile, E. et al. The XENON1T experience on dark matter. EUR. Phys. J. C 77881 (2017).

  • 27

    Aprile, E. et al. The dark matter search results from a one ton per year exposure of XENON1T. Phys. Rev. Lett. 121111302 (2018).

  • 28

    Aprile, E. et al. Design and simulation of a Cherenkov muon veto to the water for XENON1T experiment. J. Instrum. 9, P11006 (2014).

  • 29

    Aprile, E. et al. Material radioactive tests and selection for the XENON1T dark matter experiment. EUR. Phys. J. C 77890 (2017).

  • 30

    Aprile, E. et al. Elimination of xenon krypton by cryogenic distillation up to the level of ppq. EUR. Phys. J. C 77275 (2017).

  • 31.

    Laeter, J. et al. Atomic weights of the elements. 2000 Review (IUPAC Technical Report). Pure Appl. Chem. 75, 683-800 (2003).

  • 32

    Linstrom, P. & Mallard, W. G. E. NIST Chemistry WebBook, NIST Standard Reference Database Number 69 https://doi.org/10.18434/T4D303 (2018).

  • 33

    Zhang, H. et al. Dark matter direct search sensitivity of the PandaX-4T experiment. Sci. China Phys. Mech. Astron. 6231011 (2019).

  • 34

    Manalaysay, A. et al. Spatially uniform calibration of a low energy liquid xenon detector using 83mKr. Rev. Sci. instrum. 81073303 (2010).

  • 35

    Conti, E. et al. Fluctuations correlated between luminescence and ionization in liquid xenon. Phys. Rev. B 68054201 (2003).

  • 36

    Aprile, E., Giboni, K.L., Majewski, P., Ni, K. & Yamashita, M. Observation of anti-correlation between scintillation and ionization for MeV gamma rays in liquid xenon. Phys. Rev. B 76, 014115 (2007).

  • 37

    Szydagis, M. et al. NEST: a complete model of scintillation yield in liquid xenon. J. Instrum. 6, P10002 (2011).

  • 38

    Akerib, D.S. et al. Signal yields, energy resolution and recombination fluctuations in liquid xenon. Phys. Rev. D 95012008 (2017).

  • 39

    Aprile, E. et al. The XENON100 experiment on dark matter. Astropart. Phys. 35573-590 (2012).

  • [ad_2]

    Source link