Home / Science / Structure and assembly of mitochondrial membrane remodeling GTPase Mgm1

Structure and assembly of mitochondrial membrane remodeling GTPase Mgm1

  • 1.

    Nunnari, J. & Suomalainen, A. Mitochondria: in disease and health. Cell 1481145-1159 (2012).

  • 2

    Youle, R. J. and van der Bliek, A. M. Fission, fusion and mitochondrial stress. Science 3371062-1065 (2012).

  • 3

    van der Laan, M., Horvath, S.E. & Pfanner, N. Mitochondrial contact site and system of organization of the cristes. Curr. Opin. Biol cell. 41, 33-42 (2016).

  • 4

    Pernas, L. & Scorrano, L. Mito-morphosis: mitochondrial fusion, fission and remodeling of ridges as key mediators of cellular function. Annu. Rev. Physiol. 78505-531 (2016).

  • 5

    Wai, T. & Langer, T. Mitochondrial dynamics and metabolic regulation. Endocrinol Trends. Metab. 27, 105-117 (2016).

  • 6

    Jones, B.A. & Fangman, W.L. Maintaining mitochondrial DNA in yeast requires a protein containing a region related to the GTP dynamin binding domain. Genes Dev. 6380-389 (1992).

  • 7.

    Alexander, C. et al. OPA1, encoding a dynamin-linked GTPase, is mutated into autosomal dominant optical atrophy linked to chromosome 3q28. Nat. Broom. 26211-215 (2000).

  • 8

    Delettre, C. et al. The OPA1 nuclear gene, encoding a mitochondrial dynamin-linked protein, is mutated in dominant optic atrophy. Nat. Broom. 26207-210 (2000).

  • 9

    Wong, E.D. et al. Dynamin-bound GTPase, Mgm1p, is an intermembrane spatial protein necessary to maintain mitochondria competent for fusion. J. Cell Biol. 151, 341-352 (2000).

  • ten.

    Meeusen, S. et al. Mitochondrial fusion of the inner membrane and crista maintenance require Dynamin-bound GTPase Mgm1. Cell 127, 383-395 (2006).

  • 11

    Cipolat, S., Martins de Brito, O., Dal Zilio, B. and Scorrano, L. OPA1 require mitofusin 1 to promote mitochondrial fusion. Proc. Natl Acad. Sci. United States 10115927-15932 (2004).

  • 12

    Ishihara, N., Y. Fujita, Oka, T. and Mihara, K. Regulation of mitochondrial morphology by proteolytic cleavage of OPA1. EMBO J. 25, 2966-2977 (2006).

  • 13

    Meeusen, S., McCaffery, J.M. and Nunnari, J. Revealed mitochondrial fusion intermediates in vitro. Science 3051747-1752 (2004).

  • 14

    Frezza, C. et al. OPA1 controls the remodeling of apoptotic ridges independently of mitochondrial fusion. Cell 126177-189 (2006).

  • 15

    Yamaguchi, R. et al. Opa1-mediated aperture opening is dependent on Bax / Bak and BH3, required for apoptosis and independent of Bak oligomerization. Mol. Cell 31557-569 (2008).

  • 16

    Anand, R. et al. Protease i-AAA YME1L and OMA1 cleave OPA1 to balance fusion and mitochondrial fission. J. Cell Biol. 204919-929 (2014).

  • 17

    Faelber, K. et al. Crystal structure of dynamin without nucleotide. Nature 477556-560 (2011).

  • 18

    Ford, M.G., Jenni, S. & Nunnari, J. The crystalline structure of dynamin. Nature 477561-566 (2011).

  • 19

    Chappie, J.S., S. Acharya, M. Leonard, Schmid, S.L. and Dyda, F. Dimerization of the F. domain controls the activity of GTP stimulated by dynamin assembly. Nature 465435-440 (2010).

  • 20

    Ingerman, E. et al. Dnm1 forms spirals whose structure is adapted to the size of the mitochondria. J. Cell Biol. 170, 1021-1027 (2005).

  • 21

    Ban, T., Heymann, JA, Song, Z., Hinshaw, JE, and Chan, DC Alleles of OPA1 disease causing dominant optic atrophy have GTP and membrane tubular hydrolysis defects stimulated by cardiolipin. Hum. Mol. Broom. 19, 2113-2122 (2010).

  • 22

    Kong, L. et al. Cryo-EM of dynamin polymer assembled on a lipid membrane. Nature 560258-262 (2018).

  • 23

    Reubold, T.F. et al. Crystal structure of dynamin tetramer. Nature 525404-408 (2015).

  • 24

    Chiaruttini, N. et al. The relaxation of the ESCRT-III spiral springs loaded causes deformation of the membrane. Cell 163, 866-879 (2015).

  • 25

    Gao, S. et al. The structure of the myxovirus resistance protein has revealed intra- and intermolecular domain interactions necessary for antiviral function. Immunity 35514-525 (2011).

  • 26

    Frohlich, C. et al. Structural information on oligomerization and mitochondrial remodeling of dynamin-like protein 1. EMBO J 32, 1280-1292 (2013).

  • 27

    Kalia, R. et al. Structural basis of mitochondrial receptor binding and constriction by DRP1. Nature 558401-405 (2018).

  • 28

    Chappie, J. S. et al. A pseudo-atomic model of the dynamin polymer identifies a shock effect dependent on hydrolysis. Cell 147209-222 (2011).

  • 29

    Roux, A., Uyhazi, K., Frost, A. and De Camilli, P. The torsion of P. GTP-dependent dynamin involves constriction and tension in membrane fission. Nature 441, 528-531 (2006).

  • 30

    Antonny, B. et al. Membrane fission by dynamin: what we know and what we need to know. EMBO J. 352270-2224 (2016).

  • 31.

    Dubbed, S. Preparation of selenomethionyl proteins for phase determination. Enzymol methods. 276523-530 (1997).

  • 32

    Kabsch, W. XDS. Acta Cryst. re 66, 125-132 (2010).

  • 33

    Sparta, K. M., Krug, M., Heinemann, U., Mueller, U. & Weiss, M. S. Xdsapp2.0. J. Appl. Crystallogr. 491085-1092 (2016).

  • 34

    Terwilliger, T. C. et al. Decision-making in a structural solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallogr. re 65, 582-601 (2009).

  • 35

    Emsley, P. & Cowtan, K. Coot: Modeling tools for molecular graphics. Acta Crystallogr. re 602126-2132 (2004).

  • 36

    Echols, N. et al. Graphical tools for macromolecular crystallography in PHENIX. J. Appl. Crystallogr. 45, 581-586 (2012).

  • 37

    Krissinel, E. & Henrick, K. Inference of macromolecular assemblages from a crystalline state. J. Mol. Biol. 372774-797 (2007).

  • 38

    Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. re 67235-242 (2011).

  • 39

    Sievers, F. and Higgins, D. G. Clustal, Omega. Curr. Protoc. Bioinform. 48, 1.25.1-1.25.33 (2014).

  • 40

    Schuck, P. Granulometric analysis of macromolecules by ultracentrifugation of sedimentation rate and lamm equation modeling. Biophys. J. 781606-1619 (2000).

  • 41

    Longtine, M.S. et al. Additional modules for the versatile and economical removal and modification of PCR-based genes in Saccharomyces cerevisiae. Yeast 14953-961 (1998).

  • 42

    Yofe, I. & Schuldiner, M. Primers-4-Yeast: A Complete Web Tool for Primer Planning for Saccharomyces cerevisiae. Yeast 31, 77-80 (2014).

  • 43

    Sikorski, R. S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of Saccharomyces cerevisiae. Genetic 12219-27 (1989).

  • 44

    Ieva, R. et al. Mgr2 plays the role of lateral porter for the preproteic sorting in the inner membrane of mitochondria. Mol. Cell 56641-652 (2014).

  • 45

    Morgenstern, M. et al. Definition of a high confidence mitochondrial proteome on the quantitative scale. Cell Rep. 192836-2852 (2017).

  • 46

    Schindelin, J. et al. Fiji: an open-source platform for the analysis of biological images. Nat. The methods 9676-682 (2012).

  • 47

    Wilson-Kubalek, E.M., Brown, R.E., Celia, H. & Milligan, R. A. Lipid nanotubes as substrates for helical crystallization of macromolecules. Proc. Natl Acad. Sci. United States 958040-8045 (1998).

  • 48.

    Hagen, W.J.H., Wan, W. and Briggs, J.A. G. Implementation of a cryo-electron tomography-tilt scheme optimized for averaging on high resolution at medium resolution. J. Struct. Biol. 197, 191-198 (2017).

  • 49

    Mastronarde, D. N. Automated electron microscopy tomography using robust prediction of sample movements. J. Struct. Biol. 152, 36-51 (2005).

  • 50

    Grant, T. & Grigorieff, N. Measurement of optimal exposure for single-particle cryo-EM with the aid of a 2.6 Å reconstruction of VP6 rotavirus. eLife 4e06980 (2015).

  • 51.

    Zheng, S. Q. et al. MotionCor2: Anisotropic correction of beam-induced motion to improve cryo-electron microscopy. Nat. The methods 14, 331 to 332 (2017).

  • 52

    Castaño-Díez, D., Kudryashev, M., Arheit, M. & Stahlberg, H. Dynamo: a flexible and user-friendly development tool for the average subroutine of cryo-EM data in high performance computing environments. J. Struct. Biol. 178139-151 (2012).

  • 53

    Pettersen, E.F. et al. UCSF Chimera – a visualization system for exploratory research and analysis. J. Comput. Chem. 251605-1612 (2004).

  • 54

    Whitford, P.C. et al. Excited states of translocation of ribosomes revealed by integrative molecular modeling. Proc. Natl Acad. Sci. United States 108, 18943-18948 (2011).

  • 55

    Noël, J.K. et al. SMOG 2: Versatile software for generating structure-based models. PLOS Comput. Biol. 12, e1004794 (2016).

  • 56.

    Harvey, M. J. & De Fabritiis, G. AceCloud: simulations of molecular dynamics in the cloud. J. Chem. Inf. Model. 55909-914 (2015).

  • 57

    Best, R.B. et al. Optimization of the CHARMM all-atom additive protein force field targeting better sampling of the skeleton, ψ and side chain1 and2 dihedral angles. J. Chem. Comput Theory. 83257 to 3273 (2012).

  • 58

    Pronk, S. et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolbox. bioinformatics 29845-854 (2013).

  • 59

    Theile, C.S. et al. N-terminal labeling specific to a protein site by means of sortase-induced reactions. Nat. Protocol. 81800-1807 (2013).

  • 60.

    Meglei, G. & McQuibban, G. A. The Mgm1p protein, bound to dynamin, assembles into oligomers and hydrolyzes the GTP for it to function in mitochondrial membrane fusion. Biochemistry 48, 1774-1784 (2009).

  • 61.

    Roux, A. et al. The curvature of the membrane controls the polymerization of dynamin. Proc. Natl. Acad. Sci. United States 1074141-4146 (2010).

  • 62

    Rujiviphat, J. et al. The maintenance protein of the mitochondrial genome 1 (Mgm1) modifies the membrane topology and promotes the local curvature of the membrane. J. Mol. Biol. 427, 2599-2609 (2015).

  • 63.

    Mühleip, A. W. et al. The helical lattices of U-shaped ATP synthase dimers form tubular ridges in ciliated mitochondria. Proc. Natl Acad. Sci. United States 1138442-8447 (2016).

  • 64.

    Tarasenko, D. et al. The MICOS Mic60 component displays a preserved membrane folding activity necessary for the morphology of normal ridges. J. Cell Biol. 216, 889-899 (2017).

  • 65.

    Barbot, M. et al. Mic10 oligomerizes to fold the internal membranes of mitochondria at the junctions between streaks. Metab Cell. 21756-763 (2015).

  • 66.

    Bohnert, M. et al. Central role of Mic10 in the mitochondrial contact site and the system of organization of cristae. Metab Cell. 21747-755 (2015).

  • 67.

    Hessenberger, M. et al. Mic60-regulated membrane remodeling controls the formation of mitochondrial crista junctions. Nat. Common. 815258 (2017).

  • 68.

    Lee, H., Smith, S.B. and Yoon, Y. The short variant of mitochondrial dynamin, OPA1, maintains the mitochondrial energetics and the crista structure. J. Biol. Chem. 292, 7115 to 7130 (2017).

  • Source link