The baryonic density of the Universe thanks to an improved rate of deuterium combustion



[ad_1]

  • 1.

    Cyburt, RH, Champs, BD, Olive, KA & Yeh, T.-H. Big Bang nucleosynthesis: current state. Rev. Mod. Phys. 88, 015004 (2016).

    Google Scholar ADS Article

  • 2.

    Tanabashi, M. et al. Examination of particle physics. Phys. Rev. D 98, 030001 (2018).

    Google Scholar ADS Article

  • 3.

    Cooke, R., Pettini, M. & Steidel, C. Determination of one percent of the primordial abundance of deuterium. Astrophys. J. 855, 102 (2018).

    Google Scholar ADS Article

  • 4.

    Pitrou, C., Coc, A., Uzan, J. & Vangioni, E. Precision Big Bang nucleosynthesis with improved predictions of helium-4. Phys. Representative. 754, 1–66 (2018).

    ADS MathSciNet Article CAS Google Scholar

  • 5.

    Coc, A. et al. New reaction rates for a better calculation of primordial D / H and the cosmic evolution of deuterium Phys. Rev. D 92, 123526 (2015).

    Google Scholar ADS Article

  • 6.

    Di Valentino, E. et al. Survey of nuclear rates with Planck and BICEP2. Phys. Rev. D 90, 023543 (2014).

    Google Scholar ADS Article

  • seven.

    Aghanim, N. et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophysics. 641, A6 (2020).

    Google Scholar article

  • 8.

    Broggini, C., Bemmerer, D., Caciolli, A. & Trezzi, D. LUNA: status and perspectives. Program. Part. Nucl. Phys. 98, 55–84 (2018).

    Article ADS CAS Google Scholar

  • 9.

    Cavanna, F. & Prati, P. Direct measurement of nuclear cross section of astrophysical interest: results and perspectives. Int. J. Mod. Phys. A 33, 1843010–1843042 (2018).

    Article ADS CAS Google Scholar

  • ten.

    Mossa, V. et al. Commissioning configuration for improved measurement of D (p,vs)3It cuts to the energies of nucleosynthesis of the Big Bang. EUR. Phys. J. A 56, 144 (2020).

    Article ADS CAS Google Scholar

  • 11.

    Formicola, A. et al. The LUNA II 400kV accelerator. Nucl. Instrum. Methods Phys. Res. A 507, 609–616 (2003).

    Article ADS CAS Google Scholar

  • 12.

    Champs, BD, Olive, KA, Yeh, T.-H. & Young, C. Big-Bang nucleosynthesis after Planck. J. Cosmol. Astropart. Phys. 03, 010 (2020).

    ADS MathSciNet Google Scholar article

  • 13.

    Casella, C. et al. First measure of d (p,vs)3It cuts across to Gamow’s solar peak. Nucl. Phys. A 706, 203–216 (2002).

    Google Scholar ADS Article

  • 14.

    Ma, L. et al. Measures 1H (re→,vs)3Him and 2H (p→,vs)3He has very low energies. Phys. Rev. C 55, 588-596 (1997).

    Article ADS CAS Google Scholar

  • 15.

    Griffiths, G., Larson, E. & Robertson, L. Capture of protons by deuterons. Can. J. Phys. 40, 402-411 (1962).

    Google Scholar ADS Article

  • 16.

    Schmid, G. et al. the 2H (p,vs)3Him and 1H (re,vs)3It reacts below 80 keV. Phys. Rev. C 56, 2565–2581 (1997).

    Article ADS CAS Google Scholar

  • 17.

    Tišma, I. et al. Experimental section and angular distribution of 2H (p,vs)3It reacts to the nucleosynthetic energies of the Big-Bang. EUR. Phys. J. A 55, 137 (2019).

    Google Scholar ADS Article

  • 18.

    Marcucci, L., Mangano, G., Kievsky, A. & Viviani, M. Implication of proton-deuteron radiative capture for Big Bang nucleosynthesis. Phys. Rev. Lett. 116, 102501 (2016).

    Article ADS CAS Google Scholar

  • 19.

    Adelberger, E. et al. Cross sections of solar fusion. II. the pp chain cycles and CNO. Rev. Mod. Phys. 83, 195–245 (2011).

    Article ADS CAS Google Scholar

  • 20.

    Schmid, G. et al. Effects of non-nucleonic degrees of freedom in D ( ( overrightarrow {{p}} ), vs)3Him and the p( ( overrightarrow {{d}} ), vs)3He reacts Phys. Rev. Lett. 76, 3088-3091 (1996).

    Article ADS CAS Google Scholar

  • 21.

    Iliadis, C., Anderson, KS, Coc, A., Timmes, FX & Starrfield, S. Bayesian estimation of thermonuclear reaction rates. Astrophys. J. 831, 107 (2016).

    Google Scholar ADS Article

  • 22.

    Consiglio, R. et al. PArthENoPE reloaded. Comput. Phys. Common. 233, 237–242 (2018).

    Article ADS CAS Google Scholar

  • 23.

    De Salas, P. & Pastor, S. Relic Neutrino decoupling with revisited flavor oscillations. J. Cosmol. Astropart. Phys. 07, 051 (2016).

    Google Scholar article

  • 24.

    Mangano, G. et al. Decoupling of relic neutrinos with flavor oscillations. Nucl. Phys. B 729, 221-234 (2005).

    Google Scholar ADS Article

  • 25.

    Aver, E., Olive, KA and Skillman, ED The effects of He I λ10830 on helium abundance determinations. J. Cosmol. Astropart. Phys. 07, 011 (2015).

    Google Scholar ADS Article

  • 26.

    Peimbert, A., Peimbert, M. & Luridiana, V. The primordial abundance of helium and the number of neutrino families. Rev. Mex. Astron. Astrofis. 52, 419–424 (2016).

    Google Scholar CAS ADS

  • 27.

    Valerdi, M., Peimbert, A., Peimbert, M. & Sixtos, A. Determination of the primordial abundance of helium based on NGC 346, a H ii region of the small Magellanic cloud. Astrophys. J. 876, 98 (2019).

    Article ADS CAS Google Scholar

  • 28.

    Izotov, YI, Thuan, TX & Guseva, NG The primordial abundance of deuterium in the damped Lyα system which is the poorest in metals. Mon Do not. R. Astron. Share. 445, 778–793 (2014).

    Article ADS CAS Google Scholar

  • 29.

    Griffiths, G., Lal, M. & Scarfe, C. Reaction D (p,vs)3It is less than 50 keV. Can. J. Phys. 41, 724-736 (1963).

    Article ADS CAS Google Scholar

  • 30.

    Warren, JB, Erdman, KL, Robertson, LP, Axen, DA & Macdonald, JR Photodisintegration of 3He approaches the threshold. Phys. Tower. 132, 1691–1692 (1963).

    Article ADS CAS Google Scholar

  • 31.

    Geller, K., Muirhead, E. and Cohen, L. Le 2H (p,vs)3It reacts to the breaking point. Nucl. Phys. A 96, 397–400 (1967).

    Article ADS CAS Google Scholar

  • 32.

    Ferraro, F. et al. A high efficiency gas target configuration for underground experiments and a re-determination of the 189.5 keV branch ratio 22Born(p,vs)23And the resonance. EUR. Phys. J. A 54, 44 (2018).

    Google Scholar ADS Article

  • 33.

    Rolfs, C. and Rodney, W. Cauldrons in the cosmos (Univ. Chicago Press, 1988).

  • 34.

    Serpico, PD et al. Nuclear reaction network for primordial nucleosynthesis: a detailed analysis of the rates, uncertainties and yields of light nuclei. J. Cosmol. Astropart. Phys. 2004, 010 (2004).

    Google Scholar article

  • 35.

    Nollett, KM & Burles, S. Estimation of reaction rates and uncertainties for primordial nucleosynthesis. Phys. Rev. D 61, 123505 (2000).

    Google Scholar ADS Article

  • 36.

    Tumino, A. et al. New determination of 2H (re,p)3Hand 2H (re,not)3It rate of reaction to astrophysical energies. Astrophys. J. 785, 96 (2014).

    Google Scholar ADS Article

  • 37.

    Pisanti, O. et al. PArthENoPE: public algorithm evaluating the nucleosynthesis of primordial elements. Comput. Phys. Common. 178, 956–971 (2008).

    Article ADS CAS Google Scholar

  • [ad_2]

    Source link