The kimberlites reveal a 2.5 billion year evolution of a deep and isolated reservoir of the mantle



[ad_1]

  • 1.

    Hofmann, A. W. Chemical Differentiation of the Earth: The Relationship Between the Mantle, the Continental Crust and the Oceanic Crust. Earth. Sci. Lett. 90297-314 (1988).

  • 2

    Hofmann, A. W. in Treaty of geochemistry2nd edition, vol. 3 (Holland, H.D. and Turekian ed., K.T.) 67-101 (Elsevier, 2014).

  • 3

    Jackson, M.G. et al. Evidence of the survival of the oldest terrestrial mantle reservoir. Nature 466853-856 (2010).

  • 4

    Jackson, M. G. & Carlson, R. W. An ancient recipe for the genesis of basalt flood. Nature 476316-319 (2011).

  • 5

    Pearson, D.G. et al. Transition zone of the hydrated coat indicated by the ringwoodite included in the diamond. Nature 507, 221-224 (2014).

  • 6

    Nestola, F. et al. CaSiO3 The rhombic perovskite indicates the recycling of the oceanic crust into the lower mantle. Nature 555, 237-241 (2018).

  • seven.

    Torsvik, T.H., Burke, K., Steinberger B, Webb, S.J. and Ashwal, L.D. Diamonds sampled by plumes of the core – mantle boundary. Nature 466352-355 (2010).

  • 8

    Henning, A., Kiviets, G., Kurszlaukis, S., Barton, E. Mayaga-Mikolo, F. Metamorphosed Kimberlites of the Early Proterozoic of Gabon. International Conference on Kimberlite: Detailed Summaries 8Https://doi.org/10.29173/ikc3024 (2003).

  • 9

    DePaolo, D.J. & Wasserburg, G.J.Nd, isotopic variations and petrogenetic models. Geophysics Res. Lett. 3249-252 (1976).

  • ten.

    Salters, V.J.M., Mallick, S., Hart, S.R., Langmuir, C.E. and Stracke, A. Depleted mantle domains: new evidence from isotopes of hafnium and neodymium. Geochem. Geophysics Geosyst. 12, Q08001 (2011).

  • 11

    Lyubetskaya, T. & Korenaga, J. Chemical composition of the terrestrial primitive mantle and its variance: 1. Method and results. J. Geophys. Res. 112B03211 (2007).

  • 12

    Palme, H. & O'Neill, H. St. C. Treaty of geochemistry2nd edition, vol. 3 (Holland, H.D., and Turekian, K.T. eds.) 1-39 (Elsevier, 2014).

  • 13

    Trela, J. et al. The hottest lavas of the Phanerozoic and the survival of the deep Archean reservoirs. Nat. Geosci. ten451-456 (2017).

  • 14

    Bouvier, A. & Boyet, M. The materials of the early solar system and the Earth share a common initial 142Nd plenty. Nature 537399-402 (2016).

  • 15

    Bouvier, A., Vervoort, J.D. and Patchett, P. J. CHF's Lu-Hf and Sm-Nd isotopic composition: constraints of unbalanced chondrites and implications for the global composition of terrestrial planets. Earth. Sci. Lett. 273, 48-57 (2008).

  • 16

    McDonough, W. F. & Sun, S.-S. The composition of the earth. Chem. Geol. 120223-253 (1995).

  • 17

    Workman, R.K. & Hart, S.R. Major and micronutrient composition of the depleted MORB mantle (DMM). Earth. Sci. Lett. 231, 53-72 (2005).

  • 18

    Rudnick, R. L. & Gao, S. in Treaty of geochemistry2nd edition, vol. 4 (Holland, H.D. and Turekian, K.T. eds.) 1-51 (Elsevier, 2014).

  • 19

    Tachibana, Y., Kaneoka, I., Gaffney, A. and Upton, B. A source of kimberlite magmas from one island to the other of the ocean, revealed by 3He/4He ratios. Geology 34, 273-276 (2006).

  • 20

    Timmerman, S. et al. Isotopic signatures of helium primordial and recycled in the transition zone of the mantle. Science 365692-694 (2019).

  • 21

    Chauvel, C., Lewin, E., Carpentier, M., Arndt, N.T. and Marini, J.C. Role of recycled ocean basalts and ocean sediments in the generation of the Hf – Nd mantle network. Nat. Geosci. (2008).

  • 22

    Porter, K. A. and White, W. M. Deep mantle subduction flux. Geochem. Geophysics Geosyst. ten, Q12016 (2009).

  • 23

    Hulett, S.W., Simonetti, A., Rasbury, E.T. & Hemming, N.G. – Recycling of subducted crustal components in carbonatite melts revealed by boron isotopes. Nat. Geosci. 9904-908 (2016).

  • 24

    Condie, K. C. Supercontinents and superplume events: distinctive signals in the geological record. Phys. Earth. Enter. 146319-332 (2004).

  • 25

    Maruyama, S., Santosh, M. and Zhao, D. Superplume, supercontinent and post-perovskite: mantle dynamics and anti-plaque tectonics at the core-mantle boundary. Gondwana Res. 117-37 (2007).

  • 26

    Harte, B. and Richardson, S. Mineral inclusions in diamonds follow the evolution of a subducted Mesozoic slab beneath West Gondwanaland. Gondwana Res. 21236-245 (2012).

  • 27

    Nowell, G.M. et al. Hf isotopic systematics of kimberlite and its megacrystals: new constraints for their regions of origin. J. Petrol. 451583-1612 (2004).

  • 28

    van der Hilst, R.D., Widiyantoro, S. & Engdahl, E.R. Proof of deep mantle circulation from global tomography. Nature 386578-584 (1997).

  • 29

    Vervoort, J.D., Plank, T. and Prytulak, J. The isotopic Hf – Nd composition of marine sediments. GEOCHIM. Cosmochim. Acta 755903-5926 (2011).

  • 30

    Clement, C. R. A comparative geological study of some large kimberlite pipes in northern Cape and in the Orange Free State. PhD Thesis, Univ. Cape Town (1982).

  • 31.

    Kjarsgaard, B.A., Pearson, D.G., Tappe, S., Nowell, G.M. and Dowall, D.P. Geochemistry of hypabyssal kimberlites of Lac de Gras, Canada: comparisons with a global database and applications to the problem of parent magma. Lithographs 112236-248 (2009).

  • 32

    Roex, A.P., Bell, D.R. & Davis, P. Petrogenesis of Kimberley Group I kimberlites, South Africa: Demonstration by geochemistry of loose rocks. J. Petrol. 442261 to 2286 (2003).

  • 33

    Heaman, L. M. & Kjarsgaard, B. A. Timing chosen for kimberlite magmatism in eastern North America: continental extension of the Great Meteoros hotspot track? Earth. Sci. Lett. 178, 253-268 (2000).

  • 34

    Eggins, S. M. et al. A simple method for the accurate determination of ≥40 micronutrients in geological samples by ICPMS using internal standardization based on enriched isotopes. Chem. Geol. 134311-326 (1997).

  • 35

    Ottley, C.J., Pearson, D.G. & Irvine, G.J. Plasma-source mass spectrometry – Emerging applications and technologies (Holland, G. & Tanner eds., S.D.) 221-230 (Royal Society of Chemistry 2003).

  • 36

    Münker, C., Weyer, S., Scherer, E. and Mezger, K. Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICPMS measurements. Geochem. Geophysics Geosyst. 21064 (2001).

  • 37

    Pin, C. & Santos-Zalduegui, J. F. Sequential Separation of Light Rare Earth Elements, Thorium and Uranium by Miniaturized Extraction Chromatography: Application to Isotope Analysis of Silicate Rocks. Anal. Chim. Acta 339, 79-89 (1997).

  • 38

    Jweda, J., Bolge, L., C., and Goldstein, S. L. High-precision Sr-Nd-Hf-Pb isotopic compositions of the USGS BCR-2 reference material. Geostand. Geoanal. Res. 40101 to 115 (2016).

  • 39

    Dowall, D.P., Nowell, G.M. and Pearson, D.G. Plasma-source mass spectrometry – Emerging applications and technologies (Holland eds., G. & Tanner, S.D.) 321-337 (Royal Society of Chemistry, 2003).

  • 40

    Nowell, G.M. & Parrish, R.R. Plasma source mass spectrometry: the new millennium (Holland, J.G. & Tanner eds., S.D.) 298-310 (Royal Society of Chemistry, 2001).

  • 41

    Weis, D., Kieffer, B., Maerschalk, C., Pretorius, W. and Barling, J. Pb-Sr-Nd-Hf high-precision isotopic characterization of USGS BHVO-1 and BHVO-2 reference materials. Geochem. Geophysics Geosyst. 6, Q02002 (2005).

  • 42

    Woodhead, J., Hergt, J., Phillips, D. & Paton, C. Revised African Kimberlites: In situ isotopic Sr analysis of perovskite ground mass. Lithographs 112, 311-317 (2009).

  • 43

    Griffin, W. L. et al. Age and location of kimberlites and related rocks in southern Africa: U-Pb ages and Sr-Nd isotopes of mass perovskite. Contrib. Mineral. gasoline. 1681032 (2014).

  • 44

    Woodhead, J., Hergt, J., Giuliani, A., Phillips, D., and Maas, R. Monitoring continental scale modification of the Earth's mantle using zircon megacrystals. Geochem. Perspective. Lett. 41727 (2017).

  • 45

    Tappe, S., Pearson, DG, Kjarsgaard, BA, Nowell, G. & Dowall, D. Mantle, transition zone entry into kimberlite magmatism near a subduction zone: origin of abnormal systematics Nd – Hf in Western Canada, Canada. Earth. Sci. Lett. 371-372235-251 (2013).

  • 46

    Odin, D.S. et al. in Digital dating in stratigraphy Part 1 (Odin ed., G.S.) 123-148 (John Wiley & Sons, 1982).

  • 47

    Gale, A., Dalton, C.A., Langmuir, C.H., Su, Y. and Schilling, J.-G. The average composition of ocean ridge basalts. Geochem. Geophysics Geosyst. 14, 489-518 (2013).

  • 48.

    Vervoort, J. D. and Blichert-Toft, J. Evolution of the depleted mantle: evidence of Hf isotope from juvenile rocks over time GEOCHIM. Cosmochim. Acta 63533-556 (1999).

  • 49

    Chauvel, C. et al. Loess constraints on the Hf – Nd isotopic composition of the upper continental crust. Earth. Sci. Lett. 388, 48-58 (2014).

  • 50

    Scherer, E., Munker, C. and Mezger, K. Calibration of the lutetium-hafnium clock. Science 293683-687 (2001).

  • 51.

    Söderlund, U., Patchett, P.J., Vervoort, J.D. and Isachsen, C.E.The. 176A constant of Lu decay determined by the systematics of Lu – Hf and U – Pb isotopes of pre – Cambrian mafic intrusions. Earth. Sci. Lett. 219311-324 (2004).

  • 52.

    Lugmair, G.W. & Marti, initial K. Lunar 143North Dakota/144Nd: differential evolution of the lunar crust and mantle. Earth. Sci. Lett. 39349-357 (1978).

  • 53

    Scotese, C. R. PALEOMAP PaleoAtlas for GPlates and PaleoData plotter http://www.earthbyte.org/paleomap-paleoatlas-for-gplates/ (2016).

  • 54

    Müller, R.D. et al. Evolution of ocean basins and global reorganization of plates since the breakup of Pangea. Annu. Planet Earth Rev. Sci. 44, 107-138 (2016).

  • [ad_2]

    Source link