Triassic stem lepidosaurus sheds light on origin of lizard-like reptiles



[ad_1]

  • 1.

    Pursuits, HD The rise of reptiles: 320 million years of evolution (John Hopkins Univ. Press, 2019).

  • 2.

    Simões, TR & Caldwell, MW in Encyclopedia of geology 2nd ed., Vol. 3 (eds Alderton, D. & Elias, SA) 165–174 (Academic, 2021).

  • 3.

    Simões, TR & Pyron, RA The squamate tree of life. Taurus. Mus. Comp. Zool. 163, 47-95 (2021).

    Google Scholar article

  • 4.

    Uetz, P. & Hošek, J. The Reptile Database http://www.reptile-database.org (2021).

  • 5.

    Gill, F., Donsker, D. & Rasmussen, F. IOC World Bird List (v.11.1) (2021).

  • 6.

    Simões, TR, Apesteguía, S., Hsiou, AS & Daza, JD Lepidosaurs of Gondwana: an introduction. J. Herpetol. 51, 297-299 (2017).

    Google Scholar article

  • 7.

    Sues, H.-D. & Kligman, BT A new reptile resembling an Upper Triassic (Carnian) lizard from Virginia and the Triassic record of Lepidosauromorpha (Diapsida, Sauria). J. Vert. Paleontol. 40, e1879102 (2021).

    Google Scholar article

  • 8.

    Schoch, RR & Sues, H.-D. A new lepidosauromorphic reptile of the Middle Triassic (Ladinian) from Germany and its phylogenetic relationships. J. Vertebr. Paleontol. 38, e1444619 (2018).

    Google Scholar article

  • 9.

    Evans, SE & Borsuk-Białynicka, M. A small lepidosauromorphic reptile from the Lower Triassic of Poland. Paleontol. Pol. 65, 179-202 (2009).

    Google Scholar

  • ten.

    Romo De Vivar, PR, Martinelli, AG, Fonseca, PHM & Soares, MB To be or not to be: the hidden face of Enigmatic Cargninia and other puzzling Lepidosauromorpha remains from the Upper Triassic of Brazil. J. Vert. Paleontol. 40, e1828438 (2020).

    Google Scholar article

  • 11.

    Cavicchini, I., Zaher, M. & Benton, MJ An enigmatic neodiapsid reptile from the Middle Triassic of England. J. Vertebr. Paleontol. 40, e1781143 (2020).

    Google Scholar article

  • 12.

    Sobral, G., Simões, TR & Schoch, RR A brand new lepidosauromorph from the Middle Triassic strain of Germany: implications for the early evolution of lepidosauromorphs and Vellberg’s fauna. Sci. Representing. ten, 2273 (2020).

    ADS CAS Google Scholar Article

  • 13.

    Simões, TR et al. The origin of the squamates revealed by a lizard from the Middle Triassic of the Italian Alps. Nature 557, 706-709 (2018).

    Google Scholar ADS Article

  • 14.

    Simões, TR, Vernygora, O., Caldwell, MW & Pierce, SE The mega-evolutionary dynamics and timeline of evolutionary innovation in reptiles. Nat. Common. 11, 3322 (2020).

    Google Scholar ADS Article

  • 15.

    Simões, TR, Caldwell, MW & Pierce, SE Sphenodontian phylogeny and the impact of model choice in Bayesian morphological clock estimates of divergence times and evolution rates. BMC Biol. 18, 191 (2020).

    Google Scholar article

  • 16.

    Scheyer, TM et al. Colobops: a juvenile rhynchocephalic reptile (Lepidosauromorpha), not a diminutive archosauromorph with an unusually strong bite. R. Soc. Open science. 7, 192179 (2020).

    Google Scholar ADS Article

  • 17.

    Hsiou, AS, De França, MAG & Ferigolo, J. New data on the Klevosaurus (Sphenodontia: Clevosauridae) from the Upper Triassic of southern Brazil. PLoS A ten, e0137523 (2015).

    Google Scholar article

  • 18.

    Fraser, NC Osteology and the relationships of Clevisaurus (Reptile: Sphenodontida). Phil. Trans. R. Soc. London. B 321, 125-178 (1988).

    Google Scholar ADS Article

  • 19.

    Martinez, RN et al. A basal dinosaur from the dawn of the dinosaur era in southwestern Pangea. Science 331, 206-210 (2011).

    ADS CAS Google Scholar Article

  • 20.

    Garberoglio, FF et al. New skulls and skeletons of the Cretaceous legged serpent Najash, and the evolution of the modern serpent body plane. Sci. Advanced. 5, eaax5833 (2019).

    Google Scholar ADS Article

  • 21.

    Bittencourt, JS, Simões, TR, Caldwell, MW & Langer, MC The discovery of the oldest fossil lizard in South America illustrates the cosmopolitanism of the first squamates in South America. Common. Biol. 3, 201 (2020).

    Google Scholar CAS Article

  • 22.

    Bertin, TJC, Thivichon-Prince, B., LeBlanc, ARH, Caldwell, MW & Viriot, L. Current perspectives on implantation, attachment and replacement of teeth in Amniota. Before. Physiol. 9, 1630 (2018).

    Google Scholar article

  • 23.

    Fraser, NC A new British Upper Triassic rhynchocephalus. Paleontology 25, 709-725 (1982).

    Google Scholar

  • 24.

    Evans, SE The skull of a new Eosuchian reptile from the Lower Jurassic of South Wales. Zool. J. Linn. Share. 70, 203-264 (1980).

    Google Scholar article

  • 25.

    Whiteside, DI The head skeleton of the Rhaetian sphenodontid Diphydontosaurus avonis gen. and sp. nov. and the modernization of a living fossil. Phil. Trans. R. Soc. London. B 312, 379-430 (1986).

    Google Scholar ADS Article

  • 26.

    Herrera ‐ Flores, JA, Stubbs, TL & Benton, MJ Macroevolutionary models in rhynchocephaly: is the tuatara (Sphenodon punctatus) a living fossil? Paleontology 60, 319-328 (2017).

    Google Scholar article

  • 27.

    Gemmel, NJ et al. The tuatara genome reveals ancient characteristics of the evolution of amniotes. Nature 584, 403-409 (2020).

    Google Scholar CAS Article

  • 28.

    Jones, MEH et al. The integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes and tuatara). BMC Evol. Biol. 13, 208 (2013).

    Google Scholar article

  • 29.

    Hsiou, AS et al. A new Triassic (Carnian) clevosaurid from Brazil and the rise of sphenodonts to Gondwana. Sci. Representing. 9, 11821 (2019).

    Google Scholar ADS Article

  • 30.

    Vernygora, OV, Simões, TR & Campbell, EO Performance evaluation of probabilistic algorithms for phylogenetic analysis of large morphological datasets: a simulation study. Syst. Biol. 69, 1088-1105 (2020).

    Google Scholar article

  • 31.

    Maddison, WP & Maddison, DR Mesquite: A Modular System for Evolutionary Analysis, version 3.04, http://mesquiteproject.org (2015).

  • 32.

    Goloboff, PA, Farris, JS & Nixon, KC TNT, a free program for phylogenetic analysis. Cladistic 24, 774-786 (2008).

    Google Scholar article

  • 33.

    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice in a large model space. Syst. Biol. 61, 539-542 (2012).

    Google Scholar article

  • 34.

    Miller, MA, Pfeiffer, W. & Schwartz, T. Creation of the CIPRES science gateway for the inference of large phylogenetic trees in Gateway Computing Environments (GCE) Workshop 1–8 (IEEE, 2010).

  • 35.

    Lanfear, R., Frandsen, PB, Wright, AM, Senfeld, T. & Calcott, B. PartitionFinder 2: New methods of selecting partitioned evolution models for molecular and morphological phylogenetic analyzes. Mol. Biol. Evol. 34, 772-773 (2017).

    Google School CAS PubMed student

  • 36.

    Lewis, PO A likelihood approach to estimate phylogeny from discrete morphological character data. Syst. Biol. 50, 913-925 (2001).

    Google Scholar CAS Article

  • 37.

    Hughes, M., Gerber, S. & Wills, MA Clades reach the greatest morphological disparity early in their evolution. Proc. Natl Acad. Sci. United States 110, 13875-13879 (2013).

    ADS CAS Google Scholar Article

  • 38.

    Sutherland, J., Flannery, T., Moon, BC, Stubbs, TL & Benton, MJ Does exceptional preservation distort our view of disparity in the fossil record? Proc. R. Soc. London. Biol. Sci. 286, 20190091 (2019).

    Google Scholar

  • 39.

    Lloyd, GT Estimation of morphological diversity and tempo with discrete character-taxon matrices: implementation, challenges, progress and future directions. Biol. J. Linn. Share. 118, 131-151 (2016).

    Google Scholar article

  • 40.

    Gerber, S. Use and misuse of discrete character data for morpho-space and disparity analyzes. Paleontology 62, 305-319 (2019).

    Google Scholar article

  • 41.

    Cisneros, JC & Ruta, M. Morphological diversity and biogeography of procolophonids (Amniota: Parareptilia). J. Syst. Paleontology 8, 607-625 (2010).

    Google Scholar article

  • 42.

    Ciampaglio, CN, Kemp, M. & McShea, DW Detection of changes in morphospatial occupancy patterns in the fossil record: characterization and analysis of disparity measures. Paleobiology 27, 695-715 (2001).

    Google Scholar article

  • 43.

    Martinez, R., Simões, TR, Sobral, G. & Apesteguía, S. Additional data for “Triassic stem lepidosaurus sheds light on origin of lizard-like reptiles” Harvard Dataverse (2021).

  • [ad_2]

    Source link