Two-dimensional supersolidity in a dipolar quantum gas



[ad_1]

  • 1.

    Gross, EP Unified theory of interacting bosons. Phys. Tower. 106, 161-162 (1957).

    ADS CAS MATH Google Scholar

  • 2.

    Gross, EP Classical theory of boson wave fields. Anne. Physical. 4, 57-74 (1958).

    ADS MathSciNet MATH Google Scholar

  • 3.

    Andreev, AF & Lifshitz, IM Quantum theory of defects in crystals. Sov. Phys. JETP 29, 1107-1114 (1969).

    Google Scholar ADS

  • 4.

    Chester, GV Speculations on Bose-Einstein condensation and quantum crystals. Phys. Rev. TO 2, 256-258 (1970).

    Google Scholar ADS

  • 5.

    Leggett, AJ Can a solid be “superfluid”? Phys. Rev. Lett. 25, 1543-1546 (1970).

    ADS CAS Google Scholar

  • 6.

    Chan, MH-W., Hallock, R. & Reatto, L. Insight on Solid 4Him and the question of supersolidity. J. Low temperature. Physical. 172, 317-363 (2013).

    ADS CAS Google Scholar

  • 7.

    Lu, Z.-K., Li, Y., Petrov, DS & Shlyapnikov, GV Stable diluted supersolid of two-dimensional dipole bosons. Phys. Rev. Lett. 115, 075303 (2015).

    ADS PubMed PubMed Central Google Scholar

  • 8.

    Baillie, D. & Blakie, PB Ground states of droplet crystals of a dipolar Bose gas. Phys. Rev. Lett. 121, 195301 (2018).

    ADS CAS PubMed PubMed Central Google Scholar

  • 9.

    Roccuzzo, SM & Ancilotto, F. Supersolid behavior of a Bose-Einstein dipolar condensate confined in a tube. Phys. Rev. TO 99, 041601 (2019).

    ADS CAS Google Scholar

  • ten.

    Boninsegni, M. & Prokof’ev, NV Symposium: Super-solids: what and where are they? Rev. Mod. Physical. 84, 759-776 (2012).

    ADS CAS Google Scholar

  • 11.

    Tanzi, L. et al. Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett. 122, 130405 (2019).

    ADS CAS PubMed Google Scholar

  • 12.

    Böttcher, F. et al. Transient properties of supersolids in an array of dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019).

    Google Scholar

  • 13.

    Chomaz, L. et al. Behaviors of long-lived and transient supersolids in dipolar quantum gases. Phys. Rev. X 9, 021012 (2019).

    Google Scholar CAS

  • 14.

    Guo, M. et al. Low-energy Goldstone mode in a trapped dipolar supersolid. Nature 574, 386-389 (2019).

    ADS CAS PubMed PubMed Central Google Scholar

  • 15.

    Natale, G. et al. Excitation spectrum of a trapped dipolar supersolid and its experimental evidence. Phys. Rev. Lett. 123, 050402 (2019).

    ADS CAS PubMed PubMed Central Google Scholar

  • 16.

    Tanzi, L. et al. Supersolid symmetry breaking from compression oscillations in a dipolar quantum gas. Nature 574, 382-385 (2019).

    ADS CAS PubMed PubMed Central Google Scholar

  • 17.

    Birkl, G., Kassner, S. & Walther, H. Multiple shell structures of 24mg+ ions in a quadrupole storage ring. Nature 357, 310-313 (1992).

    ADS CAS Google Scholar

  • 18.

    Raizen, MG, Gilligan, JM, Bergquist, JC, Itano, WM & Wineland, DJ Ionic crystals in a linear Paul trap. Phys. Rev. TO 45, 6493-6501 (1992).

    ADS CAS PubMed PubMed Central Google Scholar

  • 19.

    Fishman, S., De Chiara, G., Calarco, T. & Morigi, G. Structural phase transitions in low dimensional ion crystals. Phys. Rev. B 77, 064111 (2008).

    Google Scholar ADS

  • 20.

    Shimshoni, E., Morigi, G. & Fishman, S. Quantum zigzag transition in ion chains. Phys. Rev. Lett. 106, 010401 (2011).

    ADS PubMed PubMed Central Google Scholar

  • 21.

    Hew, WK et al. Beginning of the formation of an electronic network in a weakly confined quantum wire. Phys. Rev. Lett. 102, 056804 (2009).

    ADS CAS PubMed PubMed Central Google Scholar

  • 22.

    Mehta, AC, Umrigar, CJ, Meyer, JS & Baranger, HU Zigzag phase transition in quantum wires. Phys. Rev. Lett. 110, 246802 (2013).

    ADS PubMed PubMed Central Google Scholar

  • 23.

    Astrakharchik, GE, Morigi, G., De Chiara, G. & Boronat, J. Ground state of low dimensional dipole gases: linear and zigzag chains. Phys. Rev. TO 78, 063622 (2008).

    Google Scholar ADS

  • 24.

    Ruhman, J., Dalla Torre, EG, Huber, SD & Altman, E. Nonlocal order in elongated dipole gases. Phys. Rev. B 85, 125121 (2012).

    Google Scholar ADS

  • 25.

    Santos, L., Shlyapnikov, GV & Lewenstein, M. Roton-maxon spectrum and stability of trapped Bose-Einstein dipolar condensates. Phys. Rev. Lett. 90, 250403 (2003).

    ADS CAS PubMed PubMed Central Google Scholar

  • 26.

    Ronen, S., Bortolotti, DCE & Bohn, JL Radial and angular rotons in trapped dipole gases. Phys. Rev. Lett. 98, 030406 (2007).

    ADS PubMed PubMed Central Google Scholar

  • 27.

    Wilson, RM, Ronen, S., Bohn, JL & Pu, H. Manifestations of the roton mode in Bose-Einstein dipolar condensates. Phys. Rev. Lett. 100, 245302 (2008).

    ADS PubMed PubMed Central Google Scholar

  • 28.

    Bisset, RN, Baillie, D. & Blakie, PB Roton excitations in a trapped Bose-Einstein dipolar condensate. Phys. Rev. TO 88, 043606 (2013).

    Google Scholar ADS

  • 29.

    Gallemí, A., Roccuzzo, SM, Stringari, S. & Recati, A. Quantified vortices in condensed gases of Bose-Einstein dipolar supersolids. Phys. Rev. TO 102, 023322 (2020).

    Google Scholar ADS

  • 30.

    Roccuzzo, SM, Gallemí, A., Recati, A. & Stringari, S. Rotation of a supersolid dipolar gas. Phys. Rev. Lett. 124, 045702 (2020).

    ADS CAS PubMed PubMed Central Google Scholar

  • 31.

    Ancilotto, F., Barranco, M., Pi, M. & Reatto, L. Vortex properties in the extended supersolid phase of Bose-Einstein dipolar condensates. Phys. Rev. TO 103, 033314 (2021).

    ADS CAS Google Scholar

  • 32.

    Zhang, Y.-C., Maucher, F. & Pohl, T. Supersolidity around a critical point in Bose-Einstein dipolar condensates. Phys. Rev. Lett. 123, 015301 (2019).

    ADS CAS PubMed PubMed Central Google Scholar

  • 33.

    Li, J.-R. et al. A band phase with supersolid properties in Bose-Einstein condensates coupled in spin-orbit. Nature 543, 91-94 (2017).

    ADS CAS PubMed Google Scholar

  • 34.

    Léonard, J., Morales, A., Zupancic, P., Esslinger, T. & Donner, T. Formation of supersolids in a quantum gas breaking continuous translational symmetry. Nature 543, 87-90 (2017).

    ADS PubMed Google Scholar

  • 35.

    Kadau, H. et al. Observation of the Rosensweig instability of a quantum ferrofluid. Nature 530, 194-197 (2016).

    ADS CAS PubMed PubMed Central Google Scholar

  • 36.

    Ferrier-Barbut, I., Kadau, H., Schmitt, M., Wenzel, M. & Pfau, T. Observation of quantum droplets in a strongly dipolar Bose gas. Phys. Rev. Lett. 116, 215301 (2016).

    ADS PubMed PubMed Central Google Scholar

  • 37.

    Chomaz, L. et al. Crossing by quantum fluctuation of a Bose-Einstein condensate diluted to a macrogroplet in a dipolar quantum fluid. Phys. Rev. X 6, 041039 (2016).

    Google Scholar

  • 38.

    Wächtler, F. & Santos, L. Quantum filaments in Bose-Einstein dipolar condensates. Phys. Rev. TO 93, 061603 (2016).

    Google Scholar ADS

  • 39.

    Bisset, RN, Wilson, RM, Baillie, D. & Blakie, PB Ground state phase diagram of a dipolar condensate with quantum fluctuations. Phys. Rev. TO 94, 033619 (2016).

    Google Scholar ADS

  • 40.

    Lavoine, L. & Bourdel, T. Transition beyond the mean field from one dimension to three dimensions in quantum droplets of binary mixtures. Phys. Rev. TO 103, 033312 (2021).

    ADS CAS Google Scholar

  • 41.

    Sohmen, M. et al. Birth, life and death of a dipolar supersolid. Phys. Rev. Lett. 126, 233401 (2021).

    ADS CAS PubMed PubMed Central Google Scholar

  • 42.

    Hadzibabic, Z., Stock, S., Battelier, B., Bretin, V. & Dalibard, J. Interference of a network of independent Bose-Einstein condensates. Phys. Rev. Lett. 93, 180403 (2004).

    ADS PubMed PubMed Central Google Scholar

  • 43.

    Schmidt, J.-N. et al. Excitations of rotons in a flattened dipolar quantum gas. Phys. Rev. Lett. 126, 193002 (2021).

    ADS CAS PubMed PubMed Central Google Scholar

  • 44.

    Pyka, K. et al. Formation of topological defects and spontaneous symmetry breaking in ionic Coulomb crystals. Nat. Common. 4, 2291 (2013).

    ADS CAS PubMed PubMed Central Google Scholar

  • 45.

    Ulm, S. et al. Observation of the Kibble-Zurek scale law for the formation of defects in ion crystals. Nat. Common. 4, 2290 (2013).

    ADS CAS PubMed PubMed Central Google Scholar

  • 46.

    Trautmann, A. et al. Dipolar quantum mixtures of erbium and dysprosium atoms. Phys. Rev. Lett. 121, 213601 (2018).

    ADS CAS PubMed PubMed Central Google Scholar

  • 47.

    Chomaz, L. et al. Observation of the population in roton mode in a dipolar quantum gas. Nat. Physical. 14, 442–446 (2018).

    PubMed PubMed Central Google Scholar

  • 48.

    Lima, ARP & Pelster, A. Quantum fluctuations of Bose dipole gases. Phys. Rev. TO 84, 041604 (2011).

    Google Scholar ADS

  • [ad_2]

    Source link