Global warming hinders the stock-recruitment dynamics of corals



[ad_1]

  • 1.

    Scheffer, M. et al. Create a secure operating space for iconic ecosystems. Science 3471317-1319 (2015).

  • 2

    Johnstone, J. F. et al. Modification of disturbance regimes, ecological memory and forest resilience. Front. School. About. 14, 369 to 378 (2016).

  • 3

    Hughes, T. P. et al. Coral reefs at the Anthropocene. Nature 546, 82-90 (2017).

  • 4

    Kleypas, J.A. et al. Larval connectivity across temperature gradients and its potential effect on heat tolerance in coral populations. Glob. Change Biol. 223539 to 3549 (2016).

  • 5

    Holbrook, S.J. et al. Recruitment results in spatial variation in the recovery rates of resilient coral reefs. Sci Rep. 87338 (2018).

  • 6

    Hughes, T. P. et al. Global warming is transforming coral reef assemblages. Nature 556492-496 (2018).

  • 7.

    King, A.D., Karoly, D.J. and Henley, B.J. The Australian climate is extreme at 1.5 ° C and 2 ° C of global warming. Nat. Clim. Change 7412-416 (2017).

  • 8

    Hughes, T. P. et al. Spatial and temporal patterns of coral mass whitening in the Anthropocene. Science 359, 80-83 (2018).

  • 9

    Heron, S.F. et al. Impacts of Climate Change on World Heritage Coral Reefs: Update of the First Global Science Assessment. http://whc.unesco.org/en/news/1878 (UNESCO World Heritage Center, 2018).

  • ten.

    Figueiredo, J., Baird, A.H. and Connolly, S.R. The synthesis of larval skills dynamics and retention at the reef scale reveals a high potential for self-recruitment in corals. Ecology 94650-659 (2013).

  • 11

    Ayre, D. J. & Hughes, T. P. Climate change, genotypic diversity and gene flow in reef-building corals. School. Lett. 7273-278 (2004).

  • 12

    Underwood, J.N., Smith, L.D., van Oppen, M.H.H. & Gilmour, J.P. Coral dispersal of ecological interest on isolated reefs: implications for resilience management. School. Appl. 19, 18-29 (2009).

  • 13

    Baird, A.H., guest, J.R. & Willis, B.L. Systematic and biogeographic schemes of the reproductive biology of scleractinian corals. Annu. Rev. School. Evol. Syst. 40551-571 (2009).

  • 14

    Hughes, T. P. et al. Ecological memory modifies the cumulative impact of recurring heat waves. Nat. Clim. Change 9, 40-43 (2019).

  • 15

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543373-377 (2017).

  • 16

    Connell, J. H. Disturbance and recovery of coral assemblages. Coral reefs 16S101 to S113 (1997).

  • 17

    Osborne, K. et al. Delay in coral recovery in a warming ocean. Glob. Change Biol. 23, 3869 to 3881 (2017).

  • 18

    Connolly, S. R. & Baird, A. H. Estimation of marine larval dispersal potential: dynamic models applied to scleractinian corals. Ecology 913572-3583 (2010).

  • 19

    Figueiredo, J., Baird, A.H. and Connolly, S.R. Increased local retention of coral reef larvae due to warming of the ocean. Nat. Clim. Change 4498-502 (2014).

  • 20

    Matz, M.V., Treml, E.A., Aglyamova, G.V. & Bay, L. K. Potential and limitations for rapid genetic adaptation to warming in coral reef coral. PLOS Genet. 14e1007220 (2018).

  • 21

    Hock, K. et al. The connectivity networks reveal the risks of crown-shaped star-shaped epidemics on the Great Barrier Reef. J. Appl. School. 511188-1196 (2014).

  • 22

    Howells, E.J., Berkelmans, R., van Oppen, M.J., Willis, B.L. and Bay, L.K. Historical heat regimes define the limits of coral acclimation. Ecology 94, 1078-1088 (2013).

  • 23

    Hendry, A. P. Eco-evolutionary dynamics (Princeton University Press, New Jersey, 2016).

  • 24

    Sweatman, H., Delean, S., and Syms, C. Evaluation of coral cover loss over the Great Barrier Reef over two decades, with implications for long-term trends. Coral reefs 30, 521-531 (2011).

  • 25

    Loya, Y. et al. Coral bleaching: winners and losers. School. Lett. 4, 122-131 (2001).

  • 26.

    Álvarez-Noriega, M. et al. Contrasting patterns of abundance changes as a result of bleaching between juvenile and adult scleractinian corals. Coral reefs 37527-532 (2018).

  • 27

    Gilmour, J.P., Smith, L.D., Heyward, A.J., Baird, A.H. and Pratchett, M.S. Recovery of an isolated coral reef system as a result of severe disturbances. Science 340, 69-71 (2013).

  • 28

    Allen, M. et al. Special report on global warming of 1.5 ° C. http://www.ipcc.ch/report/sr15/ (IPCC, 2018).

  • 29

    Australian Institute of Marine Sciences. Long-Term Reef Monitoring Program: Annual Coral Reef Status Report for 2017/18. https://www.aims.gov.au/reef-monitoring/gbr-condition-summary-2017-2018 (AIMS, 2018)

  • 30

    West, J. M. and Salm, R. V. Resistance and resilience to coral bleaching: implications for the conservation and management of coral reefs. Conserv. Biol. 17956 to 967 (2003).

  • 31.

    Hughes, T. P. et al. Patterns of recruitment and coral abundance along the Great Barrier Reef. Nature 39759-63 (1999).

  • 32

    Bates, D., Maechler, M., Bolker, B. and Walker, S. Adjustment of mixed-effect linear models using lme4. J. Stat. Software. 67, 1-48 (2015).

  • 33

    Baird, A.H. et al. Latitudinal variation of synchrony of reproduction in Acropora Assemblies: Japan vs Australia. Galaxea 11101-108 (2009).

  • [ad_2]

    Source link