Particle robotics based on the statistical mechanics of weakly coupled components



[ad_1]

  • 1.

    Rørth, P. Collective guidance of collective cell migration. Trends Cell Biol. 17575-579 (2007).

  • 2

    Haeger, A., Wolf, K., Zegers, M M. & Friedl, P. Collective cell migration: guiding principles and hierarchies. Trends Cell Biol. 25556-566 (2015).

  • 3

    Tambe, D. T. et al. Collective cell guidance by cooperative intercellular forces. Nat. mate. ten469-475 (2011).

  • 4

    Felton, S., Tolley, M., Demaine, E., Rus, D. and Wood, R. A method of constructing self-folding machines. Science 345644-646 (2014).

  • 5

    Wehner, M. et al. An integrated design and manufacturing strategy for fully soft and autonomous robots. Nature 536451-455 (2016).

  • 6

    Zykov, V., Mytilinaios, E., Adams, B. & Lipson, H. Robotics: automatic reproduction machines. Nature 435163-164 (2005).

  • 7.

    Rubenstein, M., Cornejo, A. and Nagpal, R. Programmable self-assembly in a swarm of thousands of robots. Science 345795-799 (2014).

  • 8

    Friedl, P. & Gilmour, D. Collective cellular migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Biol cell. ten445-457 (2009).

  • 9

    Weijer, C. J. Collective cell migration under development. J. Cell Sci. 122, 3215-3223 (2009).

  • ten.

    Méhes, E. & Vicsek, T. Collective Cell Movement: From Experiments to Models. Integrated. Biol. 6831-854 (2014).

  • 11

    Chen, J., Gauci M., Li W., Kolling, A. and Gross, R. Occlusion-based cooperative transport with a swarm of miniature mobile robots. IEEE Trans. Robot. 31307 to 321 (2015).

  • 12

    Butler, Z. & Rus, D. L. Distributed planning and control for modular robots with modules. Int. J. Rob. Res. 22699 to 715 (2000).

  • 13

    Gross, R., Bonani, M., Mondada, F. & Dorigo, M. Autonomous self-assembly in bats-swarms. IEEE Trans. Robot. 221115-1130 (2006).

  • 14

    Yim, M. et al. Self-reconfigurable modular robot systems. IEEE Robot. Autom. Mag. 14, 43-52 (2007).

  • 15

    Rus, D. & Vona, M. Crystalline robots: automatic reconfiguration with compressible unit modules. Auton. Robots ten107-124 (2001).

  • 16

    Shimizu, M., Ishiguro, A. and Kawakatsu, T. Slimebot: a modular robot that exploits emerging phenomena. In Proc. IEEE 2005 International Conference on Robotics and Automation 2982-2987 (IEEE, 2005).

  • 17

    Umedachi, T., Horikiri, S., Kobayashi, R. and Ishiguro, A. Improving the adaptability of the amoeboid robot by synergistically coupling two decentralized controllers inspired by the real mud mold. Adapt. Behavior. 23109-121 (2015).

  • 18

    Rubenstein, M., Sai, Y., Chuong, C.M. and Shen, W.M. Regenerative Modeling in Swarm Robots: Mutual Benefits of Research in Robotics and Stem Cell Biology. Int. J. Dev. Biol. 53869-881 (2009).

  • 19

    Shen, W.-M., Will, P., Galstyan, A. and Chuong, C.-M. Self-organization inspired by hormones and distributed control of robotic swarms. Auton. Robots 1793-105 (2004).

  • 20

    Camley, B.A. & Recall, W.-J. Physical models of collective cellular motility: from the cell to the tissue. J. Phys. D Appl. Phys. 50113002 (2017).

  • 21

    Ellison, D. et al. Cell-cell communication improves the ability of cell sets to detect shallow gradients during morphogenesis. Proc. Natl Acad. Sci. United States 113E679 to E688 (2016).

  • 22

    Mugler, A., Levchenko, A. and Nemenman, I. Limits of the accuracy of gradient detection with spatial communication and temporal integration. Proc. Natl Acad. Sci. United States 113E689 – E695 (2016).

  • 23

    Zhang, L., T., Peyer, K.E. and Nelson, J. J. Targeted delivery of merchandise with the help of a rotating nickel nanowire. Nanomed. Nanotechnol. 81074-1080 (2012).

  • 24

    Sitti, Mr. Travel microbots. Nature 458, 1121-1122 (2009).

  • 25

    Hu, W., Lum., G. Z., Mastrangeli, M. and Sitti, M. Robot with a flexible body of small size with multimodal locomotion. Nature 55481-85 (2018).

  • 26.

    Butler, Z. & Rus, D. Distributed planning and control for modular robots with compressible unit modules. Int. J. Robot. Res. 22699 to 715 (2003).

  • 27

    Yu, C.H., Werfel, J. & Nagpal, R. Coordinate collective locomotion in an amorphous modular robot. In Proc. IEEE Int. Conf. Robot. autom. 2777-2784 (IEEE, 2010).

  • 28

    Vergara, A., Y. Lau, Mendoza-Garcia, R.-F. & Zagal, J. C. Soft modular robotic cubes: towards the replication of morphogenetic movements of the embryo. PLoS One 12e0169179 (2017).

  • 29

    Altemose, A. et al. Spatiotemporal oscillations chemically controlled colloidal complexes. Angew. Chem. Int. Ed. 567817-7821 (2017).

  • 30

    Wang, B. et al. Reconfigurable swarms of ferromagnetic colloids for increased local hyperthermia. Adv. Funct. mate. 281705701 (2018).

  • 31.

    Strogatz, S. Sync: the emerging science of spontaneous order (Hyperion, New York, 2003).

  • 32

    Mirollo, R.E. & Strogatz, S.H. Synchronization of pulse coupled biological oscillators. SIAM J. Appl. Math. 501645-1662 (1990).

  • 33

    Christensen, A.L., O'Grady, R. & Dorigo, M. Fireflies to swarms of fault-tolerant robots. IEEE Trans. Evol. Comput. 13754-766 (2009).

  • 34

    Perez-Diaz, F., Zillmer, R. & Gross, R. Synchronization inspired by Firefly in swarms of mobile agents. In Proc. 2015 International Conference on Autonomous Agents and Multi-Agent Systems 279-286 (International Foundation for Autonomous Agents and Multi-Agent Systems, 2015).

  • 35

    Rubenstein, M., Ahler, C., Hoff, N. and Cabrera, A. Kilobot: a low-cost robot with scalable operations and designed for collective behavior. Robot. Auton. Syst. 62966 to 975 (2014).

  • [ad_2]

    Source link