Signatures of valley excitons trapped by moiré in heterosexuals MoSe 2 / WSe 2


  • 1.

    Dean, C. R. et al. Hofstadter's butterfly and the fractal quantum Hall effect in moiré super-networks. Nature four hundred ninety seven598-602 (2013).

  • 2

    Hunt, B. et al. Massive fermions of Dirac and Hofstadter butterfly in a van der Waals heterostructure. Science 3401427-1430 (2013).

  • 3

    Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene super networks. Nature four hundred ninety seven594-597 (2013).

  • 4

    Cao, Y. et al. Half-filled correlated insulating behavior in magical-angle graphene supergrids. Nature 556, 80-84 (2018).

  • 5

    Chen, G. et al. Evidence of the existence of a tunable Mott insulator in a three-layer supergrid of Moiré graphene. Nat. Phys. (2019).

  • 6

    Cao, Y. et al. Unconventional superconductivity in magical angle graphene supergrids. Nature 556, 43-50 (2018).

  • 7.

    Yu, H., Wang, Y., Tong, Q., Xu, X. and Yao, W. Abnormal light cones and rules of optical selection of exciton valley of the intermediate layer in twisted heterotourists. Phys. Rev. Lett. 115, 187002 (2015).

  • 8

    Yu, H., Liu, G.-B., Tang, J., Xu, X. and Yao, W. Moiré excitation: Networks of quantum transmitters programmable to spin-orbit coupled artificial networks. Sci. Adv. 3, e1701696 (2017).

  • 9

    Wu, F., Lovorn, T. and MacDonald, A. H. Theory of optical uptake by intercons excitons in heterobilayers of transition metal dichalcogenides. Phys. Rev. B 97035306 (2018).

  • ten.

    Rivera, P. et al. Dynamics of excitons polarized in the valley in a 2D semiconductor heterostructure. Science 351, 688-691 (2016).

  • 11

    Jin, C. et al. Imaging the diffusion current of the pure spin valley in WS2-We2 heterostructures. Science 360893-896 (2018).

  • 12

    Nagler, P. et al. Giant magnetic cleavage inducing valley polarization close to unity in van der Waals heterostructures. Nat. Common. 81551 (2017).

  • 13

    Jiang, C. et al. Microsecond dark valley-exciton polarization memory in two-dimensional heterostructures. Nat. Common. 9753 (2018).

  • 14

    Hsu, W.-T. et al. WSe Circular Polarization Negative Emissions2/ MoSe2 proportionate heterosexuals. Nat. Common. 91356 (2018).

  • 15

    Ciarrocchi, A. et al. Polarization switching and electrical control of intermediate layer excitons in two-dimensional van der Waals heterostructures Nat. photonics 13131-136 (2019).

  • 16

    Tran, K. et al. Moiré excitons in van der Waals heterostructures. Pre-print on (2018).

  • 17

    Rivera, P. et al. Observation of long-lived inter-layer excitons in a monolayer layer of MoSe2-Wes2 heterostructures. Nat. Common. 66242 (2015).

  • 18

    Nagler, P. et al. Dynamics of excitons between layers in a monolayer heterostructure of dichalcogenide. 2D Mat. 4025112 (2017).

  • 19

    Miller, B. et al. Excitons direct and indirect long-lasting intercitons in van der Waals heterostructures. Nano Lett. 17, 5229 to 5223 (2017).

  • 20

    Ross, J. S. et al. Interlayer excitation optoelectronics in a p – n junction with 2D heterostructure. Nano Lett. 17638 to 643 (2017).

  • 21

    Zhang, C. et al. Interleaved couplings, moire patterns and 2D electronic superlattice in the MoS2/ WSe2 hetero bilayers. Sci. Adv. 3, e1601459 (2017).

  • 22

    Bloch, I. Ultra-cold quantum gases in optical networks. Nat. Phys. 1, 23-30 (2005).

  • 23

    Hong, X. et al. Ultra-fast charge transfer in atomically thin MoS2/ WS2 heterostructures. Nat. Nanotechnol. 9, 682 to 686 (2014).

  • 24

    Him, Y.-M. et al. Simple quantum emitters in monolayer semiconductors. Nat. Nanotechnol. ten497-502 (2015).

  • 25

    Srivastava, A. et al. Optically active quantum dots in WSe monolayer2. Nat. Nanotechnol. ten491-496 (2015).

  • 26.

    Koperski, M. et al. Single-photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. ten503-506 (2015).

  • 27

    Chakraborty, C., Kinnischtzke, L., Goodfellow, K.M., Beams, R. and Vamivakas, A. N. Quantum light controlled in voltage by an atomically thin semiconductor. Nat. Nanotechnol. ten507-511 (2015).

  • 28

    Tran, T., Bray, K., Ford, M.J., Toth, M. and Aharonovich, I. Quantum emission from monolayers of hexagonal boron nitride. Nat. Nanotechnol. 11, 37-41 (2016).

  • 29

    Hanbicki, A.T. et al. Double indirect intercalary exciton in a MoSe2/ WSe2 van der Waals heterostructure. ACS Nano 124719-4726 (2018).

  • 30

    Kunstmann, J. et al. Indirect interlayer excitons in transition metal van der Waals dichalcogenide heterostructures Nat. Phys. 14801-805 (2018).

  • 31.

    Chakraborty, C. et al. 3D Trions located in a WSE layer2 in a van der Waals heterostructure tunable under load. Nano Lett. 18, 2859-2863 (2018).

  • 32

    Yu, H., Liu, G.-B. & Yao, W. Excitons spin-triplet illuminated interlocks and optical selection rules among van der Waals heterosexuals. 2D Mat. 5035021 (2018).

  • 33

    Wu, F., Lovorn, T. and MacDonald, A. H. Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett. 118147401 (2017).

  • 34

    Schaibley, J.R. et al. Directional spin-valley interlayer transfer in two-dimensional heterostructures. Nat. Common. 713747 (2016).

  • 35

    Zhang, S. et al. Structure of exciton defects localized in a WSe2 monolayer. Phys. Rev. Lett. 119046101 (2017).

  • 36

    Palacios-Berraquero, C. et al. Large quantum emitter networks in atomically thin semiconductors. Nat. Common. 815093 (2017).

  • 37

    Branny, A., Kumar, S., Proux, R. and Gerardot, B. D. Deterministic determination networks of quantum emitters in a two-dimensional semiconductor. Nat. Common. 815053 (2017).

  • 38

    Aivazian, G. et al. Magnetic control of valley pseudospine in a WSe layer2. Nat. Phys. 11, 148-152 (2015).

  • 39

    Srivastava, A. et al. Valley Zeeman effect in elementary optical excitations of the WSE monolayer2. Nat. Phys. 11141 to 147 (2015).

  • 40

    Li, Y. et al. Valley splitting and Zeeman polarization in MoSe monolayer2. Phys. Rev. Lett. 113266804 (2014).

  • 41

    MacNeill, D. et al. Rupture of degeneration of the valley by magnetic field in MoSe monolayer2. Phys. Rev. Lett. 114, 037401 (2015).

  • 42

    Yao, W., Xiao, D. & Niu, Q. Valley-dependent Optoelectronics from the Inversion Symmetry Break. Phys. Rev. B 77235406 (2008).

  • 43

    Wang, Y., Wang, Z., Yao, W., Liu, G.-B. & Yu, H. Coupling between layers in proportional and immeasurable bilayer structures of transition metal dichalcogenides. Phys. Rev. B 95115429 (2017).

  • [ad_2]
    Source link